Advertisement

An Alternative Solution to the Software Project Scheduling Problem

  • Broderick Crawford
  • Ricardo SotoEmail author
  • Gino Astorga
  • Eduardo Olguín
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 464)

Abstract

Due to the competitiveness of the software industry a more stressful tasks for software project managers allocation of the human resources to the different tasks that perform the project. This is not an easy task and it is necessary that is computationally supported since every day projects are larger and these should be developed in the shortest time and possible costs. We propose to use a constructive metaheuristics called Intelligent Water Drops. In this paper the result are compared with another constructive metaheuristics obtaining promising performance.

Keywords

Intelligent Water Drops Project management Software Project Scheduling Problem 

Notes

Acknowledgments

The author Broderick Crawford is supported by grant CONICYT/FONDECYT/REGULAR/1140897 and Ricardo Soto is supported by grant CONICYT/FONDECYT/INICIACION/11130459.

References

  1. 1.
    Crawford, B., Soto, R., Johnson, F., Monfroy, E., Paredes, F.: A maxmin ant system algorithm to solve the software project scheduling problem. Expert Syst. Appl. 41(15), 6634–6645 (2014)CrossRefGoogle Scholar
  2. 2.
    Chen, R.M.: Particle swarm optimization with justification and designed mechanisms for resource-constrained project scheduling problem. Expert Syst. Appl. 38(6), 7102–7111 (2011)CrossRefGoogle Scholar
  3. 3.
    Xiao, J., Ao, X.T., Tang, Y.: Solving software project scheduling problems with ant colony optimization. Comput. Oper. Res. 40(1), 33–46 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Biju, A.C., Victoire, T.A.A., Mohanasundaram, K.: An improved differential evolution solution for software project scheduling problem. Sci. World J. (2015)Google Scholar
  5. 5.
    Alba, E., Chicano, J.F.: Software project management with GAs. Inf. Sci. 177(11), 2380–2401 (2007)CrossRefGoogle Scholar
  6. 6.
    Chang, C.K., Jiang, H., Di, Y., Zhu, D., Ge, Y.: Time-line based model for software project scheduling with genetic algorithms. Inf. Softw. Technol. 50(11), 1142–1154 (2008)Google Scholar
  7. 7.
    Luna, F., Gonzlez-lvarez, D.L., Chicano, F., Vega-Rodrguez, M.A.: The software project scheduling problem: a scalability analysis of multi-objective metaheuristics. Appl. Soft Comput. 15, 136–148 (2014)Google Scholar
  8. 8.
    Alijla, B.O., Wong, L.P., Lim, C.P., Khader, A.T., Al-Betar, M.A.: A modified intelligent water drops algorithm and its application to optimization problems. Expert Syst. Appl. 41(15), 6555–6569 (2014)CrossRefGoogle Scholar
  9. 9.
    Shah-Hosseini, H.: An approach to continuous optimization by the intelligent water drops algorithm. Procedia—Soc. Behav. Sci. 32(0), 224–229 (2012). In: The 4th International Conference of Cognitive ScienceGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Broderick Crawford
    • 1
    • 2
    • 3
  • Ricardo Soto
    • 1
    • 4
    • 5
    Email author
  • Gino Astorga
    • 1
  • Eduardo Olguín
    • 2
  1. 1.Pontificia Universidad Católica de ValparaísoValparaísoChile
  2. 2.Universidad San SebastiánProvidenciaChile
  3. 3.Universidad Central de ChileSantiagoChile
  4. 4.Universidad Autónoma de ChileTemucoChile
  5. 5.Universidad Cientifica del SurLimaPeru

Personalised recommendations