Fireworks Explosion Can Solve the Set Covering Problem

  • Broderick Crawford
  • Ricardo Soto
  • Gonzalo AstudilloEmail author
  • Eduardo Olguín
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 464)


The Set Covering Problem is a formal model for many practical optimization problems. It consists in finding a subset of columns in a zero/one matrix such that they cover all the rows of the matrix at a minimum cost. To solve the Set Covering Problem we will use a metaheuristic called Fireworks Algorithm (FWA) inspired by the fireworks explosion. Through the observation of the way that fireworks explode is much similar to the way that an individual searches the optimal solution in swarm. Fireworks algorithm consists of four parts, i.e., the explosion operator, the mutation operator, the mapping rule and selection strategy.


Firework algorithm Set Covering Problem Metaheuristic 



The author Broderick Crawford is supported by grant CONICYT/FONDE CYT/REGULAR/1140897 and Ricardo Soto is supported by grant CONICYT/FONDECYT/INICIACION/11130459.


  1. 1.
    Crawford, B., Soto, R., Monfroy, E.: Cultural algorithms for the set covering problem. In: Tan, Y., Shi, Y., Mo, H. (eds.) Advances in Swarm Intelligence, 4th International Conference. Lecture Notes in Computer Science, vol. 7929, pp. 27–34. Springer, Harbin, China (2013)Google Scholar
  2. 2.
    Goldberg, D.: Real-Coded Genetic Algorithms, Virtual Alphabets, and Blocking. Complex Syst. 5, 139–167 (1990)Google Scholar
  3. 3.
    Amini, F., Ghaderi, P.: Hybridization of harmony search and ant colony optimization for optimal locating of structural dampers. Appl. Soft Comput. 13, 2272–2280 (2013)Google Scholar
  4. 4.
    Crawford, B., Soto, R., Monfroy, E., Palma, W., Castro, C., Paredes, F.: Parameter tuning of a choice-a function based hyperheuristic using particle swarm optimization. Expert Syst. Appl. 40, 1690–1695 (2013)Google Scholar
  5. 5.
    Crawford, B., Soto, R., Olivares-Suárez, M., Palma, W., Paredes, F., Olguin, E., Norero, E.: A binary coded firefly algorithm that solves the set covering problem, vol. 17, pp. 252–264 (2014)Google Scholar
  6. 6.
    Crawford, B., Soto, R., Olivares-Suárez, M., Paredes, F.: A binary firefly algorithm for the set covering problem. In: 3rd Computer Science On-line Conference 2014, Modern Trends and Techniques in Computer Science, vol. 285, pp. 65–73. Springer, Switzerland (2014)Google Scholar
  7. 7.
    Crawford, B., Soto, R., Peña, C., Palma, W., Johnson, F., Paredes, F.: Solving the set covering problem with a shuffled frog leaping algorithm. In: Nguyen, N.T., Trawinski, B., Kosala, R. (eds.) Intelligent Information and Database Systems—7th Asian Conference. LNCS, vol. 9012, pp. 41–50. Springer, Bali, Indonesia (2015)Google Scholar
  8. 8.
    Tan, Y.: Fireworks Algorithm. Springer, Berlin (2015)Google Scholar
  9. 9.
    Caprara, A., Fischetti, M., Toth, P.: Algorithms for the set covering problem. Ann. Oper. Res. 98, 353–371 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ali, A.I., Thiagarajan, H.: A network relaxation based enumeration algorithm for set partitioning. Eur. J. Oper. Res. 38(1), 76–85 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Walker, W.: Using the set-covering problem to assign fire companies to fire houses. Oper. Res. 22, 275–277 (1974)CrossRefGoogle Scholar
  12. 12.
    Vasko, F.J., Wolf, F.E., Stott, K.L.: Optimal selection of ingot sizes via set covering. Oper. Res. 35, 346–353 (1987)CrossRefGoogle Scholar
  13. 13.
    Balinski, M.L., Quandt, R.E.: On an integer program for a delivery problem. Oper. Res. 12(2), 300–304 (1964)CrossRefGoogle Scholar
  14. 14.
    Fisher, M.L., Rosenwein, M.B.: An interactive optimization system for bulk-cargo ship scheduling. Naval Res. Logist. 36(1), 27–42 (1989)CrossRefGoogle Scholar
  15. 15.
    Freeman, B.A., Jucker, J.V.: The line balancing problem. J. Ind. Eng. 18, 361–364 (1967)Google Scholar
  16. 16.
    Ribeiro, C.C., Minoux, M., Penna, M.C.: An optimal column-generation-with-ranking algorithm for very large scale set partitioning problems in traffic assignment. Eur. J. Oper. Res. 41(2), 232–239 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Breuer, M.A.: Simplification of the covering problem with application to boolean expressions. J. Assoc. Comput. Mach. 17, 166–181 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Christofides, N.: Zero-one programming using non-binary tree-search. Comput. J. 14(4), 418–421 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Garfinkel, R.S., Nemhauser, G.L.: Optimal political districting by implicit enumeration techniques. Manag. Sci. 16(8), B495–B508 (1970)CrossRefzbMATHGoogle Scholar
  20. 20.
    Housos, E., Elmroth, T.: Automatic optimization of subproblems in scheduling airline crews. Interfaces 27(5), 68–77 (1997)CrossRefGoogle Scholar
  21. 21.
    Mirjalili, S., Lewis, A.: S-shaped versus v-shaped transfer functions for binary particle swarm optimization. Swarm Evol. Comput. 9, 1–14 (2013)CrossRefGoogle Scholar
  22. 22.
    Beasley, J.: A lagrangian heuristic for set covering problems. Naval Res. Logist. 37, 151–164 (1990)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Broderick Crawford
    • 1
    • 2
    • 3
  • Ricardo Soto
    • 1
    • 4
    • 5
  • Gonzalo Astudillo
    • 1
    Email author
  • Eduardo Olguín
    • 3
  1. 1.Pontificia Universidad Católica de ValparaísoValparaísoChile
  2. 2.Universidad Central de ChileSantiagoChile
  3. 3.Universidad San SebastiánSantiagoChile
  4. 4.Universidad Autónoma de ChileSantiagoChile
  5. 5.Universidad Científica del SurLimaPeru

Personalised recommendations