Advertisement

Application of Fuzzy Logic for Generating Interpretable Pattern for Diabetes Disease in Bangladesh

  • Hasibul Kabir
  • Syed Nayeem Ridwan
  • A. T. M. Mosharof Hossain
  • Nazia Hasan Tuktuki
  • Farzan Haque
  • Farzana Afrin
  • Rashedur M RahmanEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 464)

Abstract

Diabetes disables body to regulate proper amount of glucose as insulin. It has impacted a vast global population. In this paper, we demonstrated a fuzzy c-means-neuro-fuzzy rule-based classifier to detect diabetic disease with an acceptable interpretability. We measured the accuracy of our implemented classifier by correctly recognizing diabetic records. Besides we measured the complexity of the classifiers by the number of selected fuzzy rules. To achieve good accuracy and interpretability, the implemented fuzzy classifier can be treated as an acceptable trade-off. At the end of the research, we compared our experiment results with the achieved results from certain medical institutions that worked on the same type of dataset which demonstrated the compactness, accuracy of the proposed approach.

Keywords

Fuzzy rules Interpretable classifier Diabetes Neuro-fuzzy ANFIS FCM Bangladeshi dataset 

References

  1. 1.
    Medical Dictionary (2016) http://medicaldictionary.thefreedictionary.com/diabetes. Accessed 5 Jan 2016
  2. 2.
    Mythili, T., Naidu, A.B., Padalia, N., Jerald, S.: Identifying Influential Parameters for Diagnosis Diabetes. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3(2), 449–455 (2013)Google Scholar
  3. 3.
    Ambilwade, R.P., Manaza, R.R., Gaikwad, P.: Medical expert systems for diabetes diagnosis: a survey. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 4(11), 647–652 (2014)Google Scholar
  4. 4.
    Tadic, D., Popovic, P., Đukic, A.: A fuzzy approach to evaluation and management of therapeutic procedure in diabetes mellitus treatment. Yugosl. J. Oper. Res. 20, 99–116 (2010)CrossRefzbMATHGoogle Scholar
  5. 5.
    Nnamoko, N., Arshad, F., England, D., Vora, J.: Fuzzy expert system for type 2 diabetes mellitus (T2DM) management using dual inference mechanism 2013. In: AAAI Spring Symposium, pp. 67–70 (2013)Google Scholar
  6. 6.
    Rajeswari, K., Vaithiyanathan, V.: Fuzzy based modeling for diabetic diagnostic decision support using artificial neural network. IJCSNS Int. J. Comput. Sci. Netw. Secur. 11, 126–130 (2011)Google Scholar
  7. 7.
    Sanakal, R., Jayakumari, T.: Prognosis of diabetes using data mining approach-fuzzy C means clustering and support vector machine. Int. J. Comput. Trends Technol. (IJCTT) 11(2), 94–98 (2014)CrossRefGoogle Scholar
  8. 8.
    Giri, T.N., Todmal, S.R.: Prognosis of diabetes using neural network, fuzzy logic, gaussian kernel method. Int. J. Comput. Appl. 124(10), 33–36 (2015)Google Scholar
  9. 9.
    Dunn, J.: A fuzzy relative of the ISODATA process and its use in detecting compact, well-separated clusters. J. Cybern. 3, 32–57 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bezdek, J.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)CrossRefzbMATHGoogle Scholar
  11. 11.
    Cannon, R.L., Dave, J.V., Bezdek, J.C.: Efficient implementation of the fuzzy c-means clustering algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 8(2), 248–255 (1986)CrossRefzbMATHGoogle Scholar
  12. 12.
    Kayaer, K., Yildirim, T.: Medical diagnosis on Pima Indian diabetes using general regression neural networks. In: Proceedings of the international conference on artificial neural networks and neural information processing. pp. 181–184, (2003)Google Scholar
  13. 13.
    Settouti, N., Chikh, M.A., Saidi, M.: Interpretable classifier of diabetes disease. Int. J. Comput. Theory Eng. 4(3), 438–442 (2012)CrossRefGoogle Scholar
  14. 14.
    National Center for Biotechnology Information: Diabetes Metabolism Journal. (2016). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3579152/figure/F1. Accessed 5 Jan 2016

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Hasibul Kabir
    • 1
  • Syed Nayeem Ridwan
    • 1
  • A. T. M. Mosharof Hossain
    • 1
  • Nazia Hasan Tuktuki
    • 1
  • Farzan Haque
    • 1
  • Farzana Afrin
    • 1
  • Rashedur M Rahman
    • 1
    Email author
  1. 1.North South UniversityDhakaBangladesh

Personalised recommendations