Advertisement

Approaches to Tackle the Nesting Problems

  • Bonfim Amaro JúniorEmail author
  • Plácido Rogério Pinheiro
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 464)

Abstract

The nesting problem arises in several manufacturing industries (e.g., furniture, garment, textile and wood). It is a representative cutting and packing problem in which a set of irregular polygons has to be placed within a rectangular container with a fixed width and a variable length to be minimized. We present a brief survey about the nesting problems in three different categories and its special approaches.

Keywords

Cutting and packing Nesting problem No-fit polygon Random key genetic algorithm 

Notes

Acknowledgments

The first author is thankful to Coordination for the Improvement of Higher Level or Education Personnel (CAPES) and the second author is thankful to National Counsel of Technological and Scientific Development (CNPq) via Grants #475,239/2012-1.

References

  1. 1.
    Albano, A., Sapuppo, G.: Optimal Allocation of Two-Dimensional Irregular Shapes Using Heuristic Search Methods. IEEE Trans. Sys. Man Cybern. SMC 10(5) (1980)Google Scholar
  2. 2.
    Alvarez-Valdes, R., Martinez, A., Tamarit, J.M.: A branch & bound algorithm for cutting and packing irregularly shaped pieces. Int. J. Prod. Econ. 145, 463–477 (2013)CrossRefGoogle Scholar
  3. 3.
    Amaro, Jr. B., Pinheiro, P.R., Saraiva, R.D.: Tackling the Irregular strip packing problem by hybridizing genetic algorithm and bottom-left heuristic. In: IEEE Congress on Evolutionary Computation (CEC), pp. 3012–3018 (2013)Google Scholar
  4. 4.
    Art, R.C.: An approach to the two-dimensional irregular cutting stock problem. Technical report 36.008, IBM Cambridge Centre (1966)Google Scholar
  5. 5.
    Baker, B.S., Coman, E.G., Rivest, R.L.: Orthogonal packing in two dimensions. SIAM J. Comput. 9(4), 846–855 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bennell, J.A., Song, X.: A beam search implementation for the irregular shape packing problem. J. Heuristics 16(2), 167–188 (2010)CrossRefzbMATHGoogle Scholar
  7. 7.
    Burke, E., et al.: A new bottom-left-fill heuristic algorithm for the two-dimensional irregular packing problem. Oper. Res. 54(3), 587–601 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Carravilla, M.A., Ribeiro, C., Oliveira, J.F.: Solving nesting problems withnon-convex polygons by constraint logic programming. Int. Trans. Oper. Res. 10(6), 651–663 (2003). Blackwell Publishing Ltd.Google Scholar
  9. 9.
    Daniels, K.K., Milenkovic, V.J., Li, Z.: Multiple containment methods, Technical report 12–94, Center for Research in Computing Technology, Harvard University, Cambridge, MA (1994)Google Scholar
  10. 10.
    de Aguiar, A.B., Pinheiro, P.R., Coelho, Andre L.V.: On the concept of density control and its application to a hybrid optimization framework: investigation into cutting problems. Comput. Ind. Eng. 61, 463–472 (2011)CrossRefGoogle Scholar
  11. 11.
    Dowsland, K.A., Vaid, S., Dowsland, W.B.: An algorithm for polygon placement using a bottom-left strategy. Eur. J. Oper. Resour. 141, 371–381 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Egeblad, J., Nielsen, B.K., Odgaard, A.: Fast neighborhood search for twoand three-dimensional nesting problems. Eur. J. Oper. Res. 183(3), 1249–1266 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Fischetti, M., Luzzi, I.: Mixed-integer programming models for nesting problems. J. Heuristics, Springer, US 15(3), 201–226 (2009)CrossRefzbMATHGoogle Scholar
  14. 14.
    Fowler, R.J., Paterson, R.M., Tanimoto, S.T.: Optimal packing and covering in the plane are NP-complete. Inf. Process. Lett. 12, 133–137 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Gomes, A.M., Oliveira, J.F.: Solving irregular strip packing problems by hybridizing simulated annealing and linear programming. Eur. J. Oper. Res. 171(3), 811–829 (2006)CrossRefzbMATHGoogle Scholar
  16. 16.
    Hopper, E., Turton, B.: A genetic algorithm for a 2d industrial packing problem. Comput. Ind. Eng. 37(1–2), 375–378 (1999)CrossRefGoogle Scholar
  17. 17.
    Jakobs, S.: On genetic algorithms for the packing of polygons. Eur. J. Oper. Res. 88(1), 165–181 (1996)CrossRefzbMATHGoogle Scholar
  18. 18.
    Leung, S.C., Lin, Y., Zhang, D.: Extended local search algorithm based on nonlinear programming for two-dimensional irregular strip packing problem. Comput. Oper. Res. 39(3), 678–686 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Oliveira, J.F., Gomes, A.M., Ferreira, J.S.: TOPOS—A new constructive algorithm for nesting problems. OR-Spektrum 22(2), 263–284 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Amaro, Jr. B., Pinheiro, P.R., Saraiva, R.D.: Dealing with nonregular shapes packing. Math. Probl. Eng. (2014)Google Scholar
  21. 21.
    Pinheiro, P.R., Oliveira, P.R.: A hybrid approach of bundle and benders applied large mixed linear integer problem. J. Appl. Math. Article ID 678783, p. 11 (2013)Google Scholar
  22. 22.
    Toledo, F.M.B., Carravilla, M.A., Ribeiro, C., Oliveira, J.F., Miguel Gomes, A.: The Dotted-Board Model: a new MIP model for nesting irregular shapes. Int. J. Prod. Econ. 145, 478–487 (2013)CrossRefGoogle Scholar
  23. 23.
    Wäscher, G., HauBner, H., Schumann, H.: An improved typology of cutting and packing problems. Eur. J. Oper. Res. 183(3), 1109–1130 (2007)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Bonfim Amaro Júnior
    • 1
    Email author
  • Plácido Rogério Pinheiro
    • 1
  1. 1.Graduate Program in Applied InformaticsUniversity of FortalezaFortalezaBrazil

Personalised recommendations