Advertisement

Biogeography-Based Optimization Algorithm for Solving the Set Covering Problem

  • Broderick Crawford
  • Ricardo Soto
  • Luis RiquelmeEmail author
  • Eduardo Olguín
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 464)

Abstract

Biogeography-Based Optimization Algorithm (BBOA) is a kind of new global optimization algorithm inspired by biogeography. It mimics the migration behavior of animals in nature to solve optimization and engineering problems. In this paper, BBOA for the Set Covering Problem (SCP) is proposed. SCP is a classic combinatorial problem from NP-hard list problems. It consist to find a set of solutions that cover a range of needs at the lowest possible cost following certain constraints. In addition, we provide a new feature for improve performance of BBOA, improving stagnation in local optimum. With this, the experiment results show that BBOA is very good at solving such problems.

Keywords

Biogeography-Based Optimization Algorithm Set Covering Problem 

Notes

Acknowledgments

The author Broderick Crawford is supported by grant CONICYT/FONDE-CYT/REGULAR/1140897 and Ricardo Soto is supported by grant CONICYT/FONDECYT/INICIACION/11130459.

References

  1. 1.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences. Freeman, W. H (1979)Google Scholar
  2. 2.
    Balas, Egon, Carrera, Maria C.: A dynamic subgradient-based branch-and-bound procedure for set covering. Oper. Res. 44(6), 875–890 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Fisher, M.L., Kedia, P.: Optimal solution of set covering/partitioning problems using dual heuristics. Manage. Sci. 36(6), 674–688 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Simon, D.: Biogeography-based optimization. IEEE Trans. Evol. Comput. 12(6), 702–713 (2008)CrossRefGoogle Scholar
  5. 5.
    Zhao, B., Deng, C., Yang, Y., Peng, Hu.: Novel binary biogeography-based optimization algorithm for the knapsack problem, pp. 217–224 (2012)Google Scholar
  6. 6.
    Beasley, J.E., Jornsten, K.: Enhancing an algorithm for set covering problems. Eur. J. Oper. Res. 58(2), 293 – 300 (1992) (Practical Combinatorial Optimization)Google Scholar
  7. 7.
    Lan, G., Depuy, G.W., Whitehouse G.E.: Discrete optimization an effective and simple heuristic for the set covering problem abstract (2005)Google Scholar
  8. 8.
    Eremeev, A.V., Kolokolov, A.A., Zaozerskaya, L.A.: A hybrid algorithm for set covering problem, pp. 123–129 (2000)Google Scholar
  9. 9.
    Monfroy, E., Crawford, B., Soto, R., Paredes, F., Palma, W.: A hybrid ant algorithm for the set covering problem. Int. J. Phys. Sci. 6, 4667–4673 (2011)Google Scholar
  10. 10.
    Crawford, B., Soto, R., Berrios, N., Johnson, F., Paredes, F.: Solving the set covering problem with binary cat swarm optimization. In: Advances in Swarm and Computational Intelligence. Lecture Notes in Computer Science, vol. 9140, pp. 41–48. Springer International Publishing (2015)Google Scholar
  11. 11.
    Crawford, B., Soto, R., Olea, C., Johnson, F., Paredes, F.: Binary bat algorithms for the set covering problem. In: 2015 10th Iberian Conference on Information Systems and Technologies (CISTI), pp. 1–4, June 2015Google Scholar
  12. 12.
    Soto, R., Crawford, B., Olivares, R., Barraza, J., Johnson, F., Paredes, F.: A binary cuckoo search algorithm for solving the set covering problem. 9108, 88–97 (2015)Google Scholar
  13. 13.
    Crawford, B., Soto, R., Cuesta, R., Paredes, F.: Application of the artificial bee colony algorithm for solving the set covering problem. Sci. World J. 2014(189164), 1–8 (2014)CrossRefGoogle Scholar
  14. 14.
    Crawford, B., Soto, R., Olivares Suarez, M., Paredes, F., Johnson, F.: Binary firefly algorithm for the set covering problem. In: 2014 9th Iberian Conference on Information Systems and Technologies (CISTI), pp. 1–5, June 2014Google Scholar
  15. 15.
    Mudaliar, D.N., Modi, N.K.: Unraveling travelling salesman problem by genetic algorithm using m-crossover operator. In: 2013 International Conference on Signal Processing Image Processing Pattern Recognition (ICSIPR), pp. 127–130, Feb 2013Google Scholar
  16. 16.
    Mo, H., Xu, L.: Biogeography migration algorithm for traveling salesman problem. In: Advances in Swarm Intelligence, vol. 6145, pp. 405–414. Springer, Heidelberg (2010)Google Scholar
  17. 17.
    Ma, H., Simon, D.: Biogeography-based optimization with blended migration for constrained optimization problems. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, pp. 417–418. ACM, New York, NY, USA (2010)Google Scholar
  18. 18.
    Naji-Azimi, Z., Toth, P., Galli, L.: An electromagnetism metaheuristic for the unicost set covering problem. Eur. J. Oper. Res. 205(2), 290–300 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Xu, Y., Kochenberger, G., Wang, H.: Pre-processing method with surrogate constraint algorithm for the set covering problemGoogle Scholar
  20. 20.
    Cuesta, R., Crawford, B., Soto, R., Paredes, F.: Application of the artificial bee colony algorithm for solving the set covering problem. Sci. World J. 4–6 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Broderick Crawford
    • 1
    • 2
    • 3
  • Ricardo Soto
    • 1
    • 4
    • 5
  • Luis Riquelme
    • 1
    Email author
  • Eduardo Olguín
    • 2
  1. 1.Pontificia Universidad Católica de ValparaísoValparaísoChile
  2. 2.Universidad San SebastiánSantiago Metropolitan RegionChile
  3. 3.Universidad Central de ChileSantiago Metropolitan RegionChile
  4. 4.Universidad Autónoma de ChileTemucoChile
  5. 5.Universidad Cientifica del SurLimaPeru

Personalised recommendations