A Firefly Algorithm to Solve the Manufacturing Cell Design Problem

  • Ricardo SotoEmail author
  • Broderick Crawford
  • Jacqueline Lama
  • Fernando Paredes
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 464)


The Manufacturing Cell Design Problem (MCDP) consists in creating an optimal design of production plants, through the creation of cells grouping machines that process parts of a given product. The goal is to reduce costs and increase productivity by minimizing movements and exchange of material between these cells. In this paper, we present a Firefly Algorithm (FA) to tackle this problem. The FA is a recent bio-inspired metaheuristic based on the mating behavior of fireflies that employ its flashing capabilities to communicate with each other or attract potential prey. We incorporate efficient transfer and discretization methods in order to suitable handle the binary domains of the problem. Interesting experimental results are illustrated where several global optimums are reached for a set of 90 well-known MCDP instances.


Manufacturing Cell Design Firefly Algorithm Metaheuristics Optimization 


  1. 1.
    Adil, G., Rajamani, D., Strong, D.: A mathematical model for cell formation considering investment and operational costs. Eur. J. Oper. Res. 69(3), 330–341 (1993)CrossRefzbMATHGoogle Scholar
  2. 2.
    Aljaber, N., Baek, W., Chen, C.-L.: A tabu search approach to the cell formation problem. Comput. Ind. Eng. 32(1), 169–185 (1997)CrossRefGoogle Scholar
  3. 3.
    Atmani, A., Lashkari, R., Caron, R.: A mathematical programming approach to joint cell formation and operation allocation in cellular manufacturing. Int. J. Prod. Res. 33(1), 1–15 (1995)CrossRefzbMATHGoogle Scholar
  4. 4.
    Boctor, F.F.: A linear formulation of the machine-part cell formation problem. Int. J. Prod. Res. 29(2), 343–356 (1991)CrossRefGoogle Scholar
  5. 5.
    Boulif, M., Atif, K.: A new branch-&-bound-enhanced genetic algorithm for the manufacturing cell formation problem. Comput. Oper. Res. 33(8), 2219–2245 (2006)CrossRefzbMATHGoogle Scholar
  6. 6.
    Burbidge, J.: Production flow analysis. Prod. Eng. 42(12), 742–752 (1963)CrossRefGoogle Scholar
  7. 7.
    Chandrasekaran, K., Simon, S.P.: Network and reliability constrained unit commitment problem using binary real coded firefly algorithm. Int. J. Electr. Power Energy Syst. 43(1), 921–932 (2012)CrossRefGoogle Scholar
  8. 8.
    Crawford, B., Soto, R., Olivares-Suárez, M., Paredes, F.: A binary firefly algorithm for the set covering problem. In: Proceedings of 3rd Computer Science On-line Conference (CSOC), AISC, vol. 285, pp. 65–73. Springer (2014)Google Scholar
  9. 9.
    Crawford, B., Soto, R., Peña, C., Palma, W., Johnson, F., Paredes, F.: A binary coded shuffled frog leaping algorithm for the set covering problem. In: Proceedings of the 7th Asian Conference on Intelligent Information and Database Systems (ACIIDS), LNCS, vol. 9012, pp. 41–50. Springer (2015)Google Scholar
  10. 10.
    Durán, O., Rodriguez, N., Consalter, L.: Collaborative particle swarm optimization with a data mining technique for manufacturing cell design. Expert Syst. Appl. 37(2), 1563–1567 (2010)CrossRefGoogle Scholar
  11. 11.
    Irani, S.A.: Handbook of Cellular Manufacturing Systems. Wiley (1999)Google Scholar
  12. 12.
    James, T.L., Brown, E.C., Keeling, K.B.: A hybrid grouping genetic algorithm for the cell formation problem. Comput. Oper. Res. 34(7), 2059–2079 (2007)CrossRefzbMATHGoogle Scholar
  13. 13.
    Lozano, S., Dáaz, A., Eguáa, I., Onieva, L.: A one-step tabu search algorithm for manufacturing cell design. J. Oper. Res. Soc. 50(5), 209–516 (1999)CrossRefGoogle Scholar
  14. 14.
    Oliva-Lopez, E., Purcheck, G.: Load balancing for group technology planning and control. Int. J. Mach. Tool Des. Res. 19(4), 259–274 (1979)CrossRefGoogle Scholar
  15. 15.
    Purcheck, G.F.K.: A linear-programming method for the combinatorial grouping of an incomplete set. J. Cybern. 5(4), 51–78 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Sankaran, S., Rodin, E.Y.: Multiple objective decision making approach to cell formation: a goal programming model. Math. Comput. Model. 13(9), 71–81 (1990)CrossRefzbMATHGoogle Scholar
  17. 17.
    Shafer, S.M., Rogers, D.F.: A goal programming approach to the cell formation problem. J. Oper. Manage. 10(1), 28–43 (1991)CrossRefGoogle Scholar
  18. 18.
    Soto, R., Kjellerstrand, H., Durán, O., Crawford, B., Monfroy, E., Paredes, F.: Cell formation in group technology using constraint programming and boolean satisfiability. Expert Syst. Appl. 39(13), 11423–11427 (2012)CrossRefGoogle Scholar
  19. 19.
    Storch, R.L.: Group technology. College of Engeneering. University of Washington (2010)Google Scholar
  20. 20.
    Venugopal, V., Narendran, T.: A genetic algorithm approach to the machine-component grouping problem with multiple objectives. Comput. Ind. Eng. 22(4), 469–480 (1992)CrossRefGoogle Scholar
  21. 21.
    Wu, T., Chang, C., Chung, S.: A simulated annealing algorithm for manufacturing cell formation problems. Expert Syst. Appl. Int. J. 34(3), 1609–1617 (2008)CrossRefGoogle Scholar
  22. 22.
    Xambre, A.R., Vilarinho, P.M.: A simulated annealing approach for manufacturing cell formation with multiple identical machines. Eur. J. Oper. Res. 151(2), 434–446 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Yang, X.-S.: Nature-Inspired Metaheuristic Algorithm. University of Cambridge, Luniver Press, UK (2008)Google Scholar
  24. 24.
    Yang, X.-S.: Firefly algorithms for multimodal optimization. In: Proceedings of the 5th International Conference on Stochastic Algorithms: Foundations and Applications (SAGA), LNCS, vol. 285. pp. 169–178. Springer (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ricardo Soto
    • 1
    • 2
    • 3
    Email author
  • Broderick Crawford
    • 1
    • 4
    • 5
  • Jacqueline Lama
    • 1
  • Fernando Paredes
    • 6
  1. 1.Pontificia Universidad Católica de ValparaísoValparaísoChile
  2. 2.Universidad Autónoma de ChileSantiagoChile
  3. 3.Universidad Cientifica del SurLimaPeru
  4. 4.Universidad Central de ChileSantiagoChile
  5. 5.Universidad San SebastiánSantiagoChile
  6. 6.Escuela de Ingeniería IndustrialUniversidad Diego PortalesSantiagoChile

Personalised recommendations