Skip to main content

Primary Processes of Damage Formation in Semiconductors

  • Chapter
  • First Online:
Ion Beam Modification of Solids

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 61))

Abstract

In this chapter damage formation and amorphisation in various semiconductors are reviewed with special focus on primary processes. Trends are shown how the parameters during ion implantation influence damage formation and to what extend the results for the various semiconductors can be generalised. It is shown that three groups of semiconductors can be identified. One group of materials exhibits a continuous transition towards amorphisation at sufficiently low temperatures. In these materials comparable mechanisms of defect formation are observed provided the implantation temperature is similarly close to or below the corresponding critical temperature of amorphisation, T c, the concept of which is discussed in this chapter. In a second group, amorphisation can be achieved at low temperatures only and only by secondary processes resulting in a discontinuous transition to amorphisation. And in a third group of materials amorphisation by ion implantation is not observed even not at low temperatures for moderate ion fluences which do not significantly alter the stoichiometry of the material. Various models are applied for describing the damage evolution. This represents a further step towards a prediction of damage to be expected for certain irradiation conditions in the corresponding materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.A. Davies, Mater. Chem. Phys. 46, 111 (1996)

    Article  ADS  Google Scholar 

  2. C.B. Yarling, J. Vac. Sci. Technol. A18, 1746 (2000)

    Article  ADS  Google Scholar 

  3. G. Hobler, G. Otto, Mater. Sci. Semicond. Process. 6, 1 (2003)

    Article  Google Scholar 

  4. K. Trachenko, J.M. Pruneda, E. Artacho, M.T. Dove, Phys. Rev. B 71, 184104 (2005)

    Article  ADS  Google Scholar 

  5. E. Wendler, in AIP Conference Proceedings 1336, 2011, p. 621

    Google Scholar 

  6. H. Bernas (ed.), Material Science with Ion Beams (Springer, Berlin, 2010)

    Google Scholar 

  7. L. Pelaz, L.A. Marqués, J. Barbolla, J. Appl. Phys. 96, 5947 (2004)

    Article  ADS  Google Scholar 

  8. W. Wesch, E. Wendler, C.S. Schnohr, Nucl. Instrum. Methods Phys. Res. B 277, 58 (2012)

    Article  ADS  Google Scholar 

  9. T. Steinbach, J. Wernecke, P. Kluth, M.C. Ridgway, W. Wesch, Phys. Rev. B 84, 104108 (2011)

    Article  ADS  Google Scholar 

  10. T. Steinbach, W. Wesch, Nucl. Instrum. Methods Phys. Res. B319, 112 (2014)

    Article  ADS  Google Scholar 

  11. B. Schmidt, W. Wetzig (eds.), Ion Beams in Materials Processing and Analysis (Springer, Wien, 2013)

    Google Scholar 

  12. W.-K. Chu, J.W. Mayer, M.-A. Nicolet, Backscattering Spectrometry (Academic Press, New York, 1978)

    Google Scholar 

  13. G. Götz, K. Gärtner (eds.), High Energy Ion Beam Analysis of Solids (Akademie-Verlag, Berlin, 1988)

    Google Scholar 

  14. M. Nastasi, J.W. Mayer, Y. Wang, Ion Beam Analysis: Fundamentals and Applications (CRC Press, New York, 2014)

    Book  Google Scholar 

  15. J.P. Biersack, J.F. Ziegler, The Stopping and Ranges of Ions in Matter, vol. 1 (Pergamon Press, Oxford, 1985)

    Google Scholar 

  16. K. Gärtner, Nucl. Instrum. Methods B 132, 147 (1997). and references therein

    Article  ADS  Google Scholar 

  17. A. Turos, P. Jozwik, L. Nowicki, N. Sathish, Nucl. Instrum. Methods Phys. Res. 332, 50 (2014). and references therein

    Article  ADS  Google Scholar 

  18. G. Götz, B. Gruska, Nucl. Instrum. Methods 194, 199 (1982)

    Article  Google Scholar 

  19. W. Wesch, K. Gärtner, A. Jordanov, G. Götz, Nucl. Instrum. Methods Phys. Res. B 45, 446 (1990)

    Article  ADS  Google Scholar 

  20. E. Bøgh, Can. J. Phys. 46, 653 (1968)

    Article  ADS  Google Scholar 

  21. K. Schmid, Rad. Eff. 17, 201 (1973)

    Article  Google Scholar 

  22. K. Gärtner, Nucl. Instrum. Methods Phys. Res. B 227, 522 (2005)

    Article  ADS  Google Scholar 

  23. E. Albertazzi, M. Bianconi, G. Lulli, R. Nipoti, M. Cantino, Nucl. Instrum. Methods Phys. Res. B 118, 128 (1996)

    Article  ADS  Google Scholar 

  24. A. Mazzone, Nucl. Instrum. Methods Phys. Res. B 34, 22 (1988)

    Article  ADS  Google Scholar 

  25. E. Wendler, L. Wendler, Appl. Phys. Lett. 100, 192108 (2012)

    Article  ADS  Google Scholar 

  26. C.W. Rischau, C.S. Schnohr, E. Wendler, W. Wesch, J. Appl. Phys. 109, 113531 (2011)

    Article  ADS  Google Scholar 

  27. E. Wendler, O. Bilani, K. Gärtner, W. Wesch, F.D. Auret, K. Lorenz, E. Alves, Nucl. Instrum. Methods Phys. Res. B 267, 2708 (2009)

    Article  ADS  Google Scholar 

  28. C.W. Rischau, C.S. Schnohr, E. Wendler, W. Wesch, Nucl. Instrum. Methods Phys. Res. B 272, 338 (2012)

    Article  ADS  Google Scholar 

  29. E. Wendler, W. Wesch, AYu. Azarov, N. Catarino, A. Redondo-Cubero, E. Alves, K. Lorenz, Nucl. Instrum. Methods Phys. Res. B 307, 394 (2013)

    Article  ADS  Google Scholar 

  30. K. Lorenz, E. Wendler, in Ion Implantation, ed. by M.S. Goorsky (InTech, Rijeka, 2012)

    Google Scholar 

  31. E. Wendler, T. Opfermann, P.I. Gaiduk, J. Appl. Phys. 82, 5965 (1997)

    Article  ADS  Google Scholar 

  32. F.F. Morehead Jr, B.L. Crowder, Rad. Eff. 6, 27 (1970)

    Article  ADS  Google Scholar 

  33. E. Wendler, A. Heft, W. Wesch, Nucl. Instrum. Methods Phys. Res. B 141, 105 (1998)

    Article  ADS  Google Scholar 

  34. W.J. Weber, Y. Zhang, L. Wang, Nucl. Instr. Meth. B 277, 1 (2012)

    Article  ADS  Google Scholar 

  35. J.R. Dennis, E.B. Hale, J. Appl. Phys. 49, 1119 (1978)

    Article  ADS  Google Scholar 

  36. R.D. Goldberg, J.S. Williams, R.G. Elliman, Nucl. Instrum. Methods Phys. Res. B 106, 242 (1995)

    Article  ADS  Google Scholar 

  37. E. Wendler, N. Dharmarasu, E. Glaser, Nucl. Instrum. Methods Phys. Res. B 160, 257 (2000)

    Article  ADS  Google Scholar 

  38. E. Wendler, B. Breeger, C. Schubert, W. Wesch, Nucl. Instrum. Methods Phys. Res. B 147, 155 (1999)

    Article  ADS  Google Scholar 

  39. T.E. Hayes, O.W. Holland, Appl. Phys. Lett. 59, 452 (1991)

    Article  ADS  Google Scholar 

  40. R.A. Brown, J.S. Williams, Phys. Rev. B 64, 155202 (2001)

    Article  ADS  Google Scholar 

  41. A. Turos, A. Stonert, B. Breeger, E. Wendler, W. Wesch, R. Fromknecht, Nucl. Instrum. Methods Phys. Res. B 148, 401 (1999)

    Article  ADS  Google Scholar 

  42. AYu. Kuznetsov, J. Wong-Leung, A. Hallén, C. Jagadish, B.G. Svenson, J. Appl. Phys. 94, 7112 (2003)

    Article  ADS  Google Scholar 

  43. F. Gao, W.J. Weber, J. Appl. Phys. 94, 4348 (2003)

    Article  ADS  Google Scholar 

  44. G. Litrico, G. Izzo, L. Calcagno, F. La Via, G. Voti, Diam. Relat. Mater. 19, 39 (2009)

    Article  ADS  Google Scholar 

  45. H. Hofsäss, S. Winter, S.G. Jahn, U. Wahl, E. Recknagel, ISOLDE Collaboration, Nucl. Instrum. Methods Phys. Res. B63, 83 (1992)

    Google Scholar 

  46. A. Pillukat, K. Karsten, P. Ehrhart, Phys. Rev. B53, 7823 (1996)

    Article  ADS  Google Scholar 

  47. H. Hausmann, P. Ehrhart, Phys. Rev. B51, 17542 (1995)

    Article  ADS  Google Scholar 

  48. U.G. Akano, I.V. Mitchell, F.R. Shepherd, Appl. Phys. Lett. 62, 1670 (1993)

    Article  ADS  Google Scholar 

  49. E. Wendler, W. Wesch, G. Götz, Nucl. Instrum. Methods Phys. Res. B 52, 57 (1990)

    Article  ADS  Google Scholar 

  50. W. Wesch, E. Wendler, N. Dharmarasu, Nucl. Instrum. Methods Phys. Res. B 175–177, 257 (2001)

    Article  Google Scholar 

  51. U.G. Akano, I.V. Mitchell, F.R. Shepherd, C.J. Miner, Can. J. Phys. 70, 789 (1992)

    Article  ADS  Google Scholar 

  52. J. Linnros, R.G. Elliman, W.L. Brown, J. Mater. Res. 3, 1208 (1988)

    Article  ADS  Google Scholar 

  53. V. Heera, T. Henkel, R. Kögler, W. Skorupa, Phys. Rev. B 52, 15776 (1995)

    Article  ADS  Google Scholar 

  54. R. Lauck, E. Wendler, W. Wesch, Nucl. Instrum. Methods Phys. Res. B 242, 484 (2006)

    Article  ADS  Google Scholar 

  55. K. Jin, Y. Zhang, H. Xue, Z. Zhu, W.J. Weber, Nucl. Instrum. Methods Phys. Res. B 307, 65 (2013)

    Article  ADS  Google Scholar 

  56. W. Wesch, E. Wendler, G. Götz, Nucl. Instrum. Methods Phys. Res. B 22, 532 (1987)

    Article  ADS  Google Scholar 

  57. E. Wendler, G. Peiter, J. Appl. Phys. 87, 7679 (2000)

    Article  ADS  Google Scholar 

  58. E. Wendler, M. Schilling, L. Wendler, Vacuum 105, 102 (2014)

    Article  ADS  Google Scholar 

  59. G. Carter, Rad. Eff. 100, 281 (1986)

    Article  Google Scholar 

  60. P. Partyka, R.S. Averback, D.V. Frobes, J.J. Coleman, P. Ehrhart, W. Jäger, Appl. Phys. Lett. 65, 421 (1994)

    Article  ADS  Google Scholar 

  61. E. Glaser, T. Fehlhaber, B. Breeger, Nucl. Instrum. Methods Phys. Res. B 148, 426 (1999)

    Article  ADS  Google Scholar 

  62. E. Wendler, A. Stonert, A. Turos, W. Wesch, Nucl. Instrum. Methods Phys. Res. B 307, 377 (2013)

    Article  ADS  Google Scholar 

  63. W.J. Weber, L.M. Wang, N. Yu, N.J. Hess, Mater. Sci. Eng. A 253, 62 (1998)

    Article  Google Scholar 

  64. C. Ascheron, H. Neumann, Cryst. Res. Technol. 22, 1493 (1987)

    Article  Google Scholar 

  65. C. Ascheron, A. Schindler, R. Flagmeyer, G. Otto, Nucl. Instrum. Methods Phys. Res. B 36, 163 (1989)

    Article  ADS  Google Scholar 

  66. W. Bolse, Nucl. Instrum. Methods Phys. Res. B 148, 83 (1999)

    Article  ADS  Google Scholar 

  67. E. Wendler, Th Bierschenk, W. Wesch, E. Friedland, J.B. Malherbe, Nucl. Instrum. Methods Phys. Res. B 268, 2996 (2010)

    Article  ADS  Google Scholar 

  68. N. Hecking, K.F. Heidemann, E. TeKaat, Nucl. Instrum. Methods Phys. Res. B 15, 760 (1986)

    Article  ADS  Google Scholar 

  69. E. Wendler, P. Schoeppe, T. Bierschenk, S. Milz, W. Wesch, N.G. van der Berg, E. Friedland, J.B. Malherbe, Nucl. Instrum. Methods Phys. Res. B 286, 93 (2012)

    Article  ADS  Google Scholar 

  70. C.S. Schnohr, E. Wendler, K. Gärtner, W. Wesch, K. Ellmer, J. Appl. Phys. 99, 123511 (2006)

    Article  ADS  Google Scholar 

  71. M. Bianconi, G.G. Bentini, M. Chiarini, P. De Nicola, G.B. Montanari, A. Menin, A. Nubile, S. Sugliani, Nucl. Instrum. Methods Phys. Res. B 268, 3451 (2010)

    Article  ADS  Google Scholar 

  72. A.G. Cullis, P.W. Smith, D.C. Jacobson, J.M. Poate, J. Appl. Phys. 69, 1279 (1991)

    Article  ADS  Google Scholar 

  73. H.H. Tan, C. Jagadish, J.S. Williams, J. Zou, D.J.H. Cockayne, A. Sikorski, J. Appl. Phys. 77, 87 (1995)

    Article  ADS  Google Scholar 

  74. J.L. Klatt, R.S. Averback, D.V. Forbes, J.J. Coleman, Phys. Rev. B 48, 17629 (1993)

    Article  ADS  Google Scholar 

  75. B. Breeger, E. Wendler, Ch. Schubert, W. Wesch, Nucl. Instrum. Methods Phys. Res. B 148, 468 (1999)

    Article  ADS  Google Scholar 

  76. E. Wendler, B. Breeger, W. Wesch, Nucl. Instrum. Methods Phys. Res. B 175–177, 78 (2001)

    Article  Google Scholar 

  77. E. Wendler, B. Breeger, W. Wesch, Nucl. Instrum. Methods Phys. Res. B 175–177, 83 (2001)

    Article  Google Scholar 

  78. A. Stonert, A. Turos, L. Novicki, B. Breeger, E. Wendler, W, Wesch, Mod. Phys, Lett. B15, 1437 (2001)

    Google Scholar 

  79. E. Wendler, in AIP Conference Proceedings 680, Melville, New York, 2003, p. 670

    Google Scholar 

  80. B. Breeger, E. Wendler, unpublished

    Google Scholar 

  81. A. Gaber, H. Zillgen, P. Ehrhart, P. Partyka, R.S. Averback, J. Appl. Phys. 82, 5348 (1997)

    Article  ADS  Google Scholar 

  82. C. Liu, B. Mensching, M. Zeitler, K. Volz, B. Rauschenbach, Phys. Rev. B 57, 2530 (1998)

    Article  ADS  Google Scholar 

  83. E. Alves, M.F. da Silva, J.C. Soares, R. Vianden, J. Bartels, A. Kozanecki, Nucl. Instrum. Methods Phys. Res. B 147, 383 (1999)

    Article  ADS  Google Scholar 

  84. S.O. Kucheyev, J.S. Williams, C. Jagadish, J. Zou, G. Li, Phys. Rev. B 62, 7510 (2000)

    Article  ADS  Google Scholar 

  85. W. Jiang, W.J. Weber, S. Thevuthasan, J. Appl. Phys. 87, 7671 (2000)

    Article  ADS  Google Scholar 

  86. E. Wendler, A. Kamarou, E. Alves, K. Gärtner, W. Wesch, Nucl. Instrum. Methods Phys. Res. B 206, 1028 (2003)

    Article  ADS  Google Scholar 

  87. S.O. Kucheyev, A. Yu. Azarov, A. Titov, P.A. Karaseov, T.M. Kuchumova, J. Phys. D: Appl. Phys., 085309 (2009)

    Google Scholar 

  88. S. Charnvanichborikarn, M.T. Myers, L. Shao, S.O. Kucheyev, Scripta Mater. 67, 205 (2012)

    Article  Google Scholar 

  89. AYu. Azarov, A.I. Titov, S.O. Kucheyev, J. Appl. Phys. 108, 033505 (2010)

    Article  ADS  Google Scholar 

  90. F. Gloux, T. Wojtowicz, P. Ruterana, K. Lorenz, E. Alves, J. Appl. Phys. 100, 073520 (2006)

    Article  ADS  Google Scholar 

  91. P. Ruterana, B. Lacroix, K. Lorenz, J. Appl. Phys. 109, 013506 (2011)

    Article  ADS  Google Scholar 

  92. K. Pagowska, R. Ratajczak, A. Stonert, L. Nowicki, A. Turos, vacuum 83, S145 (2009)

    Google Scholar 

  93. M. Katsikini, F. Pinakidou, E.C. Paloura, E. Wendler, W. Wesch, R. Manzke, J. Phys. 190, 012065 (2009). (Conference series)

    Google Scholar 

  94. B. Lacroix, S. Leclerc, A. Declémy, K. Lorenz, E. Alves, P. Ruterana, Europhys. Lett. 96, 46002 (2011)

    Article  ADS  Google Scholar 

  95. A. Turos, Rad. Eff. Defects Solids 168, 431 (2013)

    Article  ADS  Google Scholar 

  96. K. Filintoglou, P. Kavouras, M. Katsikini, J. Arvanitidis, D. Christofilos, S. Ves, E. Wendler, W. Wesch, Thin Solid Films 531, 152 (2013)

    Article  ADS  Google Scholar 

  97. M. Ishimaru, Y. Zhang, W.J. Weber, J. Appl. Phys. 106, 053513 (2009)

    Article  ADS  Google Scholar 

  98. C. Ronning, M. Dalmer, M. Uhrmacher, M. Restle, U. Vetter, L. Ziegeler, H. Hofsäss, T. Gehrke, K. Järrendahl, R.F. Davies, ISOLDE Collaboration, J. Appl. Phys. 87, 2149 (2000)

    Google Scholar 

  99. E. Wendler, W. Wesch, Nucl. Instrum. Methods Phys. Res. B 242, 562 (2006)

    Article  ADS  Google Scholar 

  100. K. Lorenz, E. Alves, E. Wendler, O. Bilani, W. Wesch, M. Hayes, Appl. Phys. Lett. 87, 191904 (2005)

    Article  ADS  Google Scholar 

  101. AYu. Azarov, E. Wendler, AYu. Kuznetsov, B.G. Svenson, Appl. Phys. Lett. 104, 052101 (2014)

    Article  ADS  Google Scholar 

  102. L.T. Chadderton, Radiat. Eff. 8, 77 (1971)

    Article  ADS  Google Scholar 

  103. G. Perillat-Marceroz, P. Gergaud, P. Marotel, St. Brochen, P.H. Jouneau, G. Feuillet, J. Appl. Phys. 109, 023513 (2011)

    Google Scholar 

  104. AYu. Azarov, S.O. Kucheev, A.I. Titov, P.A. Karaseov, J. Appl. Phys. 102, 083547 (2007)

    Article  ADS  Google Scholar 

  105. S.O. Kucheyev, J.S. Williams, C. Jagadish, J. Zou, C. Evans, A.J. Nelson, A.V. Hamza, Phys. Rev. B 67, 094115 (2003)

    Article  ADS  Google Scholar 

  106. G. Leo, A.V. Drigo, A. Traverse, Mater. Sci. Eng., B 16, 123 (1993)

    Article  Google Scholar 

  107. G. Leo, M.O. Ruault, J. Appl. Phys. 73, 2234 (1993)

    Article  ADS  Google Scholar 

  108. J.C. Bourgoin, J.W. Corbett, Radiat. Eff. 36, 157 (1978)

    Article  Google Scholar 

  109. L.C. Kimerling, Solid-State Electron. 21, 1391 (1978)

    Article  ADS  Google Scholar 

  110. H. Kerkow, V.X. Quang, B. Selle, J. Cryst. Growth 117, 677 (1992)

    Article  ADS  Google Scholar 

  111. K. Gärtner, T. Clauß, Nucl. Instrum. Methods Phys. Res. B 268, 155 (2010)

    Article  ADS  Google Scholar 

  112. V.I. Panov, A.A. Kharkov, Semiconductors 30, 444 (1996)

    ADS  Google Scholar 

  113. C.-Y. Yeh, Z.L. Lu, S. Froyen, A. Zunger, Phys. Rev. B 46, 10086 (1992)

    Article  ADS  Google Scholar 

  114. H.M. Naguib, R. Kelly, Radiat. Eff. 25, 1 (1975)

    Article  Google Scholar 

  115. K. Trachenko, J. Phys. Condens. Matter 16, R1491 (2004)

    Article  ADS  Google Scholar 

  116. J.J. Gilman, J. Phys. D Appl. Phys. 41, 074020 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elke Wendler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wendler, E., Wesch, W. (2016). Primary Processes of Damage Formation in Semiconductors. In: Wesch, W., Wendler, E. (eds) Ion Beam Modification of Solids. Springer Series in Surface Sciences, vol 61. Springer, Cham. https://doi.org/10.1007/978-3-319-33561-2_5

Download citation

Publish with us

Policies and ethics