Magnetic Resonance Spectroscopy in Ataxias

Part of the Contemporary Clinical Neuroscience book series (CCNE)


Ataxia refers to deficits in coordination of movement and balance. This chapter focuses on recessively and dominantly inherited as well as sporadic degenerative ataxias. These diseases are characterized by neurodegeneration in the cerebellar system, including the cerebellum and its afferent and efferent connections, and frequently also in other brain regions such as the pontine nuclei. They display great pathological diversity, as well as phenotypic variability; thus there is a great need for imaging biomarkers that reflect the underlying pathology and that can be used for diagnostic, prognostic, and treatment monitoring purposes. Despite technical challenges of magnetic resonance spectroscopy (MRS) in the cerebellum and brainstem, MRS has been shown to be sensitive to neurochemical alterations in various degenerative ataxias. Namely, early neurochemical abnormalities have been detected by MRS in ataxias prior to the structural atrophy detectable by conventional MRI and prior to symptoms. Correlations with clinical status and pathological severity were demonstrated in clinical and animal model studies, respectively. MRS was also shown to distinguish different ataxia subtypes, with potential utility in differential diagnosis, especially valuable for sporadic ataxias in the absence of genetic testing. Finally, a few studies have utilized MRS for treatment monitoring in clinical trials of recessive ataxias, and a great need exists in this area for all degenerative ataxias. More longitudinal investigations and standardization of advanced MRS methodology for multi-site trials will be critical in this respect.


Spinocerebellar ataxia Friedreich’s ataxia Multiple system atrophy Ataxia-telangiectasia Ataxia with oculomotor apraxia Autosomal recessive spastic ataxia of Charlevoix-Saguenay 



The preparation of this chapter was in part supported by the National Institute of Neurological Disorders and Stroke (NINDS) grant R01 NS070815. The Center for MR Research is supported by the National Institute of Biomedical Imaging and Bioengineering (NIBIB) grant P41 EB015894 and the Institutional Center Cores for Advanced Neuroimaging award P30 NS076408.


  1. 1.
    Trouillas P, Takayanagi T, Hallett M, Currier RD, Subramony SH, Wessel K, Bryer A, Diener HC, Massaquoi S, Gomez CM, Coutinho P, Ben Hamida M, Campanella G, Filla A, Schut L, Timann D, Honnorat J, Nighoghossian N, Manyam B (1997) International cooperative ataxia rating scale for pharmacological assessment of the cerebellar syndrome. The ataxia neuropharmacology committee of the world federation of neurology. J Neurol Sci 145(2):205–211CrossRefPubMedGoogle Scholar
  2. 2.
    Schmitz-Hübsch T, du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C, Giunti P, Globas C, Infante J, Kang JS, Kremer B, Mariotti C, Melegh B, Pandolfo M, Rakowicz M, Ribai P, Rola R, Schöls L, Szymanski S, van de Warrenburg BP, Dürr A, Klockgether T, Fancellu R (2006) Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology 66(11):1717–1720CrossRefPubMedGoogle Scholar
  3. 3.
    Subramony SH, May W, Lynch D, Gomez C, Fischbeck K, Hallett M, Taylor P, Wilson R, Ashizawa T (2005) Measuring Friedreich ataxia: Interrater reliability of a neurologic rating scale. Neurology 64(7):1261–1262CrossRefPubMedGoogle Scholar
  4. 4.
    Lynch DR, Farmer JM, Tsou A, Perlman S, Subramony SH, Gomez CM, Ashizawa T, Wilmot GR, Wilson RB, Balcer LJ (2006) Measuring Friedreich ataxia: complementary features of examination and performance measures. Neurology 66(11):1711–1716CrossRefPubMedGoogle Scholar
  5. 5.
    Rüb U, Schöls L, Paulson H, Auburger G, Kermer P, Jen JC, Seidel K, Korf HW, Deller T (2013) Clinical features, neurogenetics and neuropathology of the polyglutamine spinocerebellar ataxias type 1, 2, 3, 6 and 7. Prog Neurobiol 104:38–66CrossRefPubMedGoogle Scholar
  6. 6.
    Koeppen AH, Davis AN, Morral JA (2011) The cerebellar component of Friedreich’s ataxia. Acta Neuropathol 122(3):323–330CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Koeppen AH, Mazurkiewicz JE (2013) Friedreich ataxia: neuropathology revised. J Neuropathol Exp Neurol 72(2):78–90CrossRefPubMedGoogle Scholar
  8. 8.
    Boder E (1985) Ataxia-telangiectasia: an overview. Kroc Found Ser 19:1–63PubMedGoogle Scholar
  9. 9.
    Criscuolo C, Chessa L, Di Giandomenico S, Mancini P, Sacca F, Grieco GS, Piane M, Barbieri F, De Michele G, Banfi S, Pierelli F, Rizzuto N, Santorelli FM, Gallosti L, Filla A, Casali C (2006) Ataxia with oculomotor apraxia type 2: a clinical, pathologic, and genetic study. Neurology 66(8):1207–1210CrossRefPubMedGoogle Scholar
  10. 10.
    Bouchard J-P (1991) Recessive ataxia of Charlevoix-Saguenay. Handb Clin Neurol 16:451–459Google Scholar
  11. 11.
    Gouw LG, Digre KB, Harris CP, Haines JH, Ptacek LJ (1994) Autosomal dominant cerebellar ataxia with retinal degeneration: clinical, neuropathologic, and genetic analysis of a large kindred. Neurology 44(8):1441–1447CrossRefPubMedGoogle Scholar
  12. 12.
    Robitaille Y, Schut L, Kish SJ (1995) Structural and immunocytochemical features of olivopontocerebellar atrophy caused by the spinocerebellar ataxia type 1 (SCA-1) mutation define a unique phenotype. Acta Neuropathol 90(6):572–581CrossRefPubMedGoogle Scholar
  13. 13.
    Gilman S, Little R, Johanns J, Heumann M, Kluin KJ, Junck L, Koeppe RA, An H (2000) Evolution of sporadic olivopontocerebellar atrophy into multiple system atrophy. Neurology 55(4):527–532CrossRefPubMedGoogle Scholar
  14. 14.
    Marie P, Foix C, Alajouanine T (1922) De l’atrophie cerebelleuse tardive a predominance corticale. Revue Neurol 38(849-885):1082–1111Google Scholar
  15. 15.
    Duarte JM, Lei H, Mlynárik V, Gruetter R (2012) The neurochemical profile quantified by in vivo 1H NMR spectroscopy. Neuroimage 61(2):342–362. doi: 10.1016/j.neuroimage.2011.12.038 CrossRefPubMedGoogle Scholar
  16. 16.
    Emir UE, Auerbach EJ, Moortele PF, Marjańska M, Ugurbil K, Terpstra M, Tkáč I, Öz G (2012) Regional neurochemical profiles in the human brain measured by 1H MRS at 7 T using local B1 shimming. NMR Biomed 25(1):152–160. doi: 10.1002/nbm.1727 Google Scholar
  17. 17.
    Öz G (2013) MR spectroscopy in health and disease. In: Manto M, Gruol DL, Schmahmann JD, Koibuchi N, Rossi F (eds) Handbook of the cerebellum and cerebellar disorders, vol 1. Springer, Dordrecht, pp 713–733CrossRefGoogle Scholar
  18. 18.
    Zu T, Duvick LA, Kaytor MD, Berlinger MS, Zoghbi HY, Clark HB, Orr HT (2004) Recovery from polyglutamine-induced neurodegeneration in conditional SCA1 transgenic mice. J Neurosci 24(40):8853–8861CrossRefPubMedGoogle Scholar
  19. 19.
    Xia H, Mao Q, Eliason SL, Harper SQ, Martins IH, Orr HT, Paulson HL, Yang L, Kotin RM, Davidson BL (2004) RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat Med 10(8):816–820CrossRefPubMedGoogle Scholar
  20. 20.
    Klockgether T (2011) Update on degenerative ataxias. Curr Opin Neurol 24(4):339–345. doi: 10.1097/WCO.0b013e32834875ba CrossRefPubMedGoogle Scholar
  21. 21.
    Voncken M, Ioannou P, Delatycki MB (2004) Friedreich ataxia-update on pathogenesis and possible therapies. Neurogenetics 5(1):1–8CrossRefPubMedGoogle Scholar
  22. 22.
    Zoghbi HY, Orr HT (2009) Pathogenic mechanisms of a polyglutamine-mediated neurodegenerative disease, spinocerebellar ataxia type 1. J Biol Chem 284(12):7425–7429CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Mueller SG, Schuff N, Weiner MW (2006) Evaluation of treatment effects in Alzheimer’s and other neurodegenerative diseases by MRI and MRS. NMR Biomed 19(6):655–668CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Klockgether T, Skalej M, Wedekind D, Luft AR, Welte D, Schulz JB, Abele M, Burk K, Laccone F, Brice A, Dichgans J (1998) Autosomal dominant cerebellar ataxia type I. MRI-based volumetry of posterior fossa structures and basal ganglia in spinocerebellar ataxia types 1, 2 and 3. Brain 121(Pt 9):1687–1693CrossRefPubMedGoogle Scholar
  25. 25.
    Boesch SM, Schocke M, Burk K, Hollosi P, Fornai F, Aichner FT, Poewe W, Felber S (2001) Proton magnetic resonance spectroscopic imaging reveals differences in spinocerebellar ataxia types 2 and 6. J Magn Reson Imaging 13(4):553–559CrossRefPubMedGoogle Scholar
  26. 26.
    Guerrini L, Lolli F, Ginestroni A, Belli G, Nave RD, Tessa C, Foresti S, Cosottini M, Piacentini S, Salvi F, Plasmati R, De Grandis D, Siciliano G, Filla A, Mascalchi M (2004) Brainstem neurodegeneration correlates with clinical dysfunction in SCA1 but not in SCA2. A quantitative volumetric, diffusion and proton spectroscopy MR study. Brain 127(Pt 8):1785–1795CrossRefPubMedGoogle Scholar
  27. 27.
    Prakash N, Hageman N, Hua X, Toga AW, Perlman SL, Salamon N (2009) Patterns of fractional anisotropy changes in white matter of cerebellar peduncles distinguish spinocerebellar ataxia-1 from multiple system atrophy and other ataxia syndromes. Neuroimage 47(Suppl 2):T72–T81CrossRefPubMedGoogle Scholar
  28. 28.
    Schulz JB, Borkert J, Wolf S, Schmitz-Hübsch T, Rakowicz M, Mariotti C, Schöls L, Timmann D, van de Warrenburg B, Dürr A, Pandolfo M, Kang JS, Mandly AG, Nagele T, Grisoli M, Boguslawska R, Bauer P, Klockgether T, Hauser TK (2010) Visualization, quantification and correlation of brain atrophy with clinical symptoms in spinocerebellar ataxia types 1, 3 and 6. Neuroimage 49(1):158–168CrossRefPubMedGoogle Scholar
  29. 29.
    Öz G, Iltis I, Hutter D, Thomas W, Bushara KO, Gomez CM (2011) Distinct neurochemical profiles of spinocerebellar ataxias 1, 2, 6, and cerebellar multiple system atrophy. Cerebellum 10(2):208–217. doi: 10.1007/s12311-010-0213-6 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Rudnicki DD, Margolis RL (2003) Repeat expansion and autosomal dominant neurodegenerative disorders: consensus and controversy. Expert Rev Mol Med 5(21):1–24CrossRefPubMedGoogle Scholar
  31. 31.
    Schöls L, Bauer P, Schmidt T, Schulte T, Riess O (2004) Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol 3(5):291–304CrossRefPubMedGoogle Scholar
  32. 32.
    Schmitz-Hübsch T, Coudert M, Bauer P, Giunti P, Globas C, Baliko L, Filla A, Mariotti C, Rakowicz M, Charles P, Ribai P, Szymanski S, Infante J, van de Warrenburg BP, Dürr A, Timmann D, Boesch S, Fancellu R, Rola R, Depondt C, Schöls L, Zdienicka E, Kang JS, Döhlinger S, Kremer B, Stephenson DA, Melegh B, Pandolfo M, di Donato S, du Montcel ST, Klockgether T (2008) Spinocerebellar ataxia types 1, 2, 3, and 6: disease severity and nonataxia symptoms. Neurology 71(13):982–989CrossRefPubMedGoogle Scholar
  33. 33.
    Garwood M, DelaBarre L (2001) The return of the frequency sweep: designing adiabatic pulses for contemporary NMR. J Magn Reson 153(2):155–177CrossRefPubMedGoogle Scholar
  34. 34.
    Öz G, Tkáč I (2011) Short-echo, single-shot, full-intensity proton magnetic resonance spectroscopy for neurochemical profiling at 4 T: Validation in the cerebellum and brainstem. Magn Reson Med 65(4):901–910. doi: 10.1002/mrm.22708 CrossRefPubMedGoogle Scholar
  35. 35.
    Scheenen TW, Klomp DW, Wijnen JP, Heerschap A (2008) Short echo time 1H-MRSI of the human brain at 3T with minimal chemical shift displacement errors using adiabatic refocusing pulses. Magn Reson Med 59(1):1–6CrossRefPubMedGoogle Scholar
  36. 36.
    Mlynárik V, Gambarota G, Frenkel H, Gruetter R (2006) Localized short-echo-time proton MR spectroscopy with full signal-intensity acquisition. Magn Reson Med 56(5):965–970CrossRefPubMedGoogle Scholar
  37. 37.
    Deelchand DK, Adanyeguh IM, Emir UE, Nguyen TM, Valabregue R, Henry PG, Mochel F, Öz G (2015) Two-site reproducibility of cerebellar and brainstem neurochemical profiles with short-echo, single voxel MRS at 3 T. Magn Reson Med 73(5):1718–1725. doi: 10.1002/mrm.25295 CrossRefPubMedGoogle Scholar
  38. 38.
    Adanyeguh IM, Henry PG, Nguyen TM, Rinaldi D, Jauffret C, Valabregue R, Emir UE, Deelchand DK, Brice A, Eberly LE, Öz G, Durr A, Mochel F (2015) In vivo neurometabolic profiling in patients with spinocerebellar ataxia types 1, 2, 3, and 7. Mov Disord 30(5):662–670. doi: 10.1002/mds.26181 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Guerrini L, Belli G, Mazzoni L, Foresti S, Ginestroni A, Della Nave R, Diciotti S, Mascalchi M (2009) Impact of cerebrospinal fluid contamination on brain metabolites evaluation with 1H-MR spectroscopy: a single voxel study of the cerebellar vermis in patients with degenerative ataxias. J Magn Reson Imaging 30(1):11–17CrossRefPubMedGoogle Scholar
  40. 40.
    Ernst T, Kreis R, Ross BD (1993) Absolute quantitation of water and metabolites in the human brain. I Compartments and water. J Magn Reson 102:1–8CrossRefGoogle Scholar
  41. 41.
    Hetherington HP, Pan JW, Mason GF, Adams D, Vaughn MJ, Twieg DB, Pohost GM (1996) Quantitative 1H spectroscopic imaging of human brain at 4.1 T using image segmentation. Magn Reson Med 36(1):21–29CrossRefPubMedGoogle Scholar
  42. 42.
    Deelchand DK, Iltis I, Henry PG (2014) Improved quantification precision of human brain short echo-time 1H magnetic resonance spectroscopy at high magnetic field: a simulation study. Magn Reson Med 72(1):20–25. doi: 10.1002/mrm.24892 CrossRefPubMedGoogle Scholar
  43. 43.
    Griffin JL, Cemal CK, Pook MA (2004) Defining a metabolic phenotype in the brain of a transgenic mouse model of spinocerebellar ataxia 3. Physiol Genomics 16(3):334–340PubMedGoogle Scholar
  44. 44.
    Öz G, Nelson CD, Koski DM, Henry PG, Marjanska M, Deelchand DK, Shanley R, Eberly LE, Orr HT, Clark HB (2010) Noninvasive detection of presymptomatic and progressive neurodegeneration in a mouse model of spinocerebellar ataxia type 1. J Neurosci 30(10):3831–3838CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Öz G, Hutter D, Tkáč I, Clark HB, Gross MD, Jiang H, Eberly LE, Bushara KO, Gomez CM (2010) Neurochemical alterations in spinocerebellar ataxia type 1 and their correlations with clinical status. Mov Disord 25(9):1253–1261CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Öz G, Vollmers ML, Nelson CD, Shanley R, Eberly LE, Orr HT, Clark HB (2011) In vivo monitoring of recovery from neurodegeneration in conditional transgenic SCA1 mice. Exp Neurol 232(2):290–298. doi: 10.1016/j.expneurol.2011.09.021 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Öz G, Kittelson E, Demirgöz D, Rainwater O, Eberly LE, Orr HT, Clark HB (2015) Assessing recovery from neurodegeneration in spinocerebellar ataxia 1: Comparison of in vivo magnetic resonance spectroscopy with motor testing, gene expression and histology. Neurobiol Dis 74:158–166. doi: 10.1016/j.nbd.2014.11.011 CrossRefPubMedGoogle Scholar
  48. 48.
    Watase K, Weeber EJ, Xu B, Antalffy B, Yuva-Paylor L, Hashimoto K, Kano M, Atkinson R, Sun Y, Armstrong DL, Sweatt JD, Orr HT, Paylor R, Zoghbi HY (2002) A long CAG repeat in the mouse Sca1 locus replicates SCA1 features and reveals the impact of protein solubility on selective neurodegeneration. Neuron 34(6):905–919CrossRefPubMedGoogle Scholar
  49. 49.
    Emir UE, Brent Clark H, Vollmers ML, Eberly LE, Öz G (2013) Non-invasive detection of neurochemical changes prior to overt pathology in a mouse model of spinocerebellar ataxia type 1. J Neurochem 127(5):660–668. doi: 10.1111/jnc.12435 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Armbrust KR, Wang X, Hathorn T, Cramer SW, Chen G, Zu T, Obu T, Zink AN, Öz G, Ebner TJ, Ranum LPW (2014) Mutant β-III spectrin causes mGluR1α mislocalization and functional deficits in a mouse model of spinocerebellar ataxia type 5. J Neurosci 34(30):9891–9904. doi: 10.1523/JNEUROSCI.0876-14.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Harding AE (1983) Classification of the hereditary ataxias and paraplegias. Lancet 1(8334):1151–1155. doi:S0140-6736(83)92879-9 Google Scholar
  52. 52.
    Davie CA, Barker GJ, Webb S, Tofts PS, Thompson AJ, Harding AE, McDonald WI, Miller DH (1995) Persistent functional deficit in multiple sclerosis and autosomal dominant cerebellar ataxia is associated with axon loss. Brain 118(Pt 6):1583–1592CrossRefPubMedGoogle Scholar
  53. 53.
    Terakawa H, Abe K, Watanabe Y, Nakamura M, Fujita N, Hirabuki N, Yanagihara T (1999) Proton magnetic resonance spectroscopy (1H MRS) in patients with sporadic cerebellar degeneration. J Neuroimaging 9(2):72–77CrossRefPubMedGoogle Scholar
  54. 54.
    Mascalchi M, Cosottini M, Lolli F, Salvi F, Tessa C, Macucci M, Tosetti M, Plasmati R, Ferlini A, Tassinari CA, Villari N (2002) Proton MR spectroscopy of the cerebellum and pons in patients with degenerative ataxia. Radiology 223(2):371–378CrossRefPubMedGoogle Scholar
  55. 55.
    Viau M, Marchand L, Bard C, Boulanger Y (2005) 1H magnetic resonance spectroscopy of autosomal ataxias. Brain Res 1049(2):191–202CrossRefPubMedGoogle Scholar
  56. 56.
    Franca MC Jr, D’Abreu A, Yasuda CL, Bonadia LC, Santos da Silva M, Nucci A, Lopes-Cendes I, Cendes F (2009) A combined voxel-based morphometry and 1H-MRS study in patients with Friedreich’s ataxia. J Neurol 256(7):1114–1120CrossRefPubMedGoogle Scholar
  57. 57.
    Hadjivassiliou M, Wallis LI, Hoggard N, Grunewald RA, Griffiths PD, Wilkinson ID (2012) MR spectroscopy and atrophy in Gluten, Friedreich’s and SCA6 ataxias. Acta Neurol Scand 126(2):138–143. doi: 10.1111/j.1600-0404.2011.01620.x CrossRefPubMedGoogle Scholar
  58. 58.
    Iltis I, Hutter D, Bushara KO, Clark HB, Gross M, Eberly LE, Gomez CM, Öz G (2010) 1H MR spectroscopy in Friedreich’s ataxia and ataxia with oculomotor apraxia type 2. Brain Res 1358:200–210. doi: 10.1016/j.brainres.2010.08.030 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Mascalchi M (2013) The cerebellum looks normal in Friedreich ataxia. AJNR Am J Neuroradiol 34(2), E22. doi: 10.3174/ajnr.A3480 CrossRefPubMedGoogle Scholar
  60. 60.
    Chevis CF, da Silva CB, D’Abreu A, Lopes-Cendes I, Cendes F, Bergo FP, Franca MC Jr (2013) Spinal cord atrophy correlates with disability in Friedreich’s ataxia. Cerebellum 12(1):43–47. doi: 10.1007/s12311-012-0390-6 CrossRefPubMedGoogle Scholar
  61. 61.
    Henry PG, Deelchand DK, Iltis I, Hutter D, Bushara KO, Öz G, Lenglet C MRS and Diffusion MRI of the Spinal Cord in Friedreich’s Ataxia. In: Proc Intl Soc Mag Reson Med, Milan, Italy, 2014. p 571Google Scholar
  62. 62.
    Lodi R, Cooper JM, Bradley JL, Manners D, Styles P, Taylor DJ, Schapira AH (1999) Deficit of in vivo mitochondrial ATP production in patients with Friedreich ataxia. Proc Natl Acad Sci U S A 96(20):11492–11495CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Vorgerd M, Schols L, Hardt C, Ristow M, Epplen JT, Zange J (2000) Mitochondrial impairment of human muscle in Friedreich ataxia in vivo. Neuromuscul Disord 10(6):430–435CrossRefPubMedGoogle Scholar
  64. 64.
    Schols L, Vorgerd M, Schillings M, Skipka G, Zange J (2001) Idebenone in patients with Friedreich ataxia. Neurosci Lett 306(3):169–172CrossRefPubMedGoogle Scholar
  65. 65.
    Nachbauer W, Boesch S, Schneider R, Eigentler A, Wanschitz J, Poewe W, Schocke M (2013) Bioenergetics of the calf muscle in Friedreich ataxia patients measured by 31P-MRS before and after treatment with recombinant human erythropoietin. PLoS One 8(7), e69229. doi: 10.1371/journal.pone.0069229 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Lodi R, Rajagopalan B, Blamire AM, Cooper JM, Davies CH, Bradley JL, Styles P, Schapira AH (2001) Cardiac energetics are abnormal in Friedreich ataxia patients in the absence of cardiac dysfunction and hypertrophy: an in vivo 31P magnetic resonance spectroscopy study. Cardiovasc Res 52(1):111–119CrossRefPubMedGoogle Scholar
  67. 67.
    Bunse M, Bit-Avragim N, Riefflin A, Perrot A, Schmidt O, Kreuz FR, Dietz R, Jung WI, Osterziel KJ (2003) Cardiac energetics correlates to myocardial hypertrophy in Friedreich’s ataxia. Ann Neurol 53(1):121–123. doi: 10.1002/ana.10419 CrossRefPubMedGoogle Scholar
  68. 68.
    Lodi R, Hart PE, Rajagopalan B, Taylor DJ, Crilley JG, Bradley JL, Blamire AM, Manners D, Styles P, Schapira AH, Cooper JM (2001) Antioxidant treatment improves in vivo cardiac and skeletal muscle bioenergetics in patients with Friedreich’s ataxia. Ann Neurol 49(5):590–596CrossRefPubMedGoogle Scholar
  69. 69.
    Hart PE, Lodi R, Rajagopalan B, Bradley JL, Crilley JG, Turner C, Blamire AM, Manners D, Styles P, Schapira AH, Cooper JM (2005) Antioxidant treatment of patients with Friedreich ataxia: four-year follow-up. Arch Neurol 62(4):621–626CrossRefPubMedGoogle Scholar
  70. 70.
    Wallis LI, Griffiths PD, Ritchie SJ, Romanowski CA, Darwent G, Wilkinson ID (2007) Proton spectroscopy and imaging at 3T in ataxia-telangiectasia. AJNR Am J Neuroradiol 28(1):79–83PubMedGoogle Scholar
  71. 71.
    Palmeri S, Rufa A, Pucci B, Santarnecchi E, Malandrini A, Stromillo ML, Mandala M, Rosini F, De Stefano N, Federico A (2013) Clinical course of two Italian siblings with ataxia-telangiectasia-like disorder. Cerebellum 12(4):596–599. doi: 10.1007/s12311-013-0460-4 CrossRefPubMedGoogle Scholar
  72. 72.
    Viau M, Boulanger Y (2004) Characterization of ataxias with magnetic resonance imaging and spectroscopy. Parkinsonism Relat Disord 10(6):335–351CrossRefPubMedGoogle Scholar
  73. 73.
    Mascalchi M, Tosetti M, Plasmati R, Bianchi MC, Tessa C, Salvi F, Frontali M, Valzania F, Bartolozzi C, Tassinari CA (1998) Proton magnetic resonance spectroscopy in an Italian family with spinocerebellar ataxia type 1. Ann Neurol 43(2):244–252CrossRefPubMedGoogle Scholar
  74. 74.
    Tedeschi G, Bertolino A, Massaquoi SG, Campbell G, Patronas NJ, Bonavita S, Barnett AS, Alger JR, Hallett M (1996) Proton magnetic resonance spectroscopic imaging in patients with cerebellar degeneration. Ann Neurol 39(1):71–78CrossRefPubMedGoogle Scholar
  75. 75.
    Deelchand DK, Emir UE, Hutter D, Gomez CM, Eberly LE, Bushara KO, Öz G High field MRS is more sensitive to progression of neurodegeneration than clinical decline in spinocerebellar ataxia type 1 (SCA1). In: Proc Intl Soc Mag Reson Med, Milan, Italy, 2014. p 64Google Scholar
  76. 76.
    Lirng JF, Wang PS, Chen HC, Soong BW, Guo WY, Wu HM, Chang CY (2012) Differences between spinocerebellar ataxias and multiple system atrophy-cerebellar type on proton magnetic resonance spectroscopy. PLoS One 7(10), e47925. doi: 10.1371/journal.pone.0047925 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    D’Abreu A, Franca M Jr, Appenzeller S, Lopes-Cendes I, Cendes F (2009) Axonal dysfunction in the deep white matter in Machado-Joseph disease. J Neuroimaging 19(1):9–12. doi: 10.1111/j.1552-6569.2008.00260.x CrossRefPubMedGoogle Scholar
  78. 78.
    Doss S, Brandt AU, Oberwahrenbrock T, Endres M, Paul F, Rinnenthal JL (2014) Metabolic evidence for cerebral neurodegeneration in spinocerebellar ataxia type 1. Cerebellum 13(2):199–206. doi: 10.1007/s12311-013-0527-2 CrossRefPubMedGoogle Scholar
  79. 79.
    Wang PS, Chen HC, Wu HM, Lirng JF, Wu YT, Soong BW (2012) Association between proton magnetic resonance spectroscopy measurements and CAG repeat number in patients with spinocerebellar ataxias 2, 3, or 6. PLoS One 7(10), e47479. doi: 10.1371/journal.pone.0047479 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Watanabe H, Fukatsu H, Katsuno M, Sugiura M, Hamada K, Okada Y, Hirayama M, Ishigaki T, Sobue G (2004) Multiple regional 1H-MR spectroscopy in multiple system atrophy: NAA/Cr reduction in pontine base as a valuable diagnostic marker. J Neurol Neurosurg Psychiatry 75(1):103–109PubMedPubMedCentralGoogle Scholar
  81. 81.
    Boesch SM, Wolf C, Seppi K, Felber S, Wenning GK, Schocke M (2007) Differentiation of SCA2 from MSA-C using proton magnetic resonance spectroscopic imaging. J Magn Reson Imaging 25(3):564–569CrossRefPubMedGoogle Scholar
  82. 82.
    van de Bank BL, Emir UE, Boer VO, van Asten JJ, Maas MC, Wijnen JP, Kan HE, Öz G, Klomp DW, Scheenen TW (2015) Multi-center reproducibility of neurochemical profiles in the human brain at 7 T. NMR Biomed 28(3):306–316. doi: 10.1002/nbm.3252 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Radiology, Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of Laboratory Medicine and PathologyUniversity of MinnesotaMinneapolisUSA

Personalised recommendations