MR Spectroscopy in Multiple Sclerosis

Part of the Contemporary Clinical Neuroscience book series (CCNE)


Multiple Sclerosis is a chronic inflammatory demyelinating disorder of the central nervous system. 1H-MRS provides us with additional information on the chemical pathology within the brain and spinal cord in MS patients, when compared to conventional MRI. This has enhanced our understanding of the pathogenesis and natural history in multiple sclerosis. It has proved a useful biomarker of neurodegeneration, as reflected by a decrease in the levels of the neuronal marker, N-acetylaspartate. Changes in choline and myo-inositol have also informed us of the importance of monitoring changes in myelin damage and repair and of the extent of gliosis. This chapter will provide an overview of 1H-MRS in the brain and spinal cord in clinical and preclinical studies in multiple sclerosis. We will also discuss the future potential of 1H-MRS in multiple sclerosis and its promising applications.


Multiple sclerosis MR spectroscopy Brain Spinal cord White matter Grey matter Disability Neurodegeneration Inflammation Progression 


  1. 1.
    Pugliatti M, Rosati G, Carton H, Riise T, Drulovic J, Vecsei L, Milanov I (2006) The epidemiology of multiple sclerosis in Europe. Eur J Neurol 13:700–722PubMedCrossRefGoogle Scholar
  2. 2.
    Miller DH, Leary SM (2007) Primary-progressive multiple sclerosis. Lancet Neurol 6:903–912PubMedCrossRefGoogle Scholar
  3. 3.
    Ebers GC, Daumer M (2008) Natural history of MS. Eur J Neurol 15:881–882PubMedCrossRefGoogle Scholar
  4. 4.
    Mackenzie IS, Morant SV, Bloomfield GA, MacDonald TM, O’Riordan JI (2013) Changing face of multiple sclerosis in the United kingdom 1990-2010. An incidence and prevalence study. J Neurol Neurosurg Psychiatry 84:e2CrossRefGoogle Scholar
  5. 5.
    Evans C, Beland SG, Kulaga S, Wolfson C, Kingwell E, Marriott J, Koch M, Makhani N, Morrow S, Fisk J, Dykeman J, Jette N, Pringsheim T, Marrie RA (2013) Incidence and prevalence of multiple sclerosis in the Americas: a systematic review. Neuroepidemiology 40:195–210PubMedCrossRefGoogle Scholar
  6. 6.
    Compston A, Coles A (2008) Multiple sclerosis. Lancet 372:1502–1517PubMedCrossRefGoogle Scholar
  7. 7.
    Confavreux C, Compston DA, Hommes OR, McDonald WI, Thompson AJ (1992) EDMUS, a European database for multiple sclerosis. J Neurol Neurosurg Psychiatry 55:671–676PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Confavreux C, Vukusic S (2006) Natural history of multiple sclerosis: a unifying concept. Brain 129:606–616PubMedCrossRefGoogle Scholar
  9. 9.
    Lublin FD, Reingold SC (1996) Defining the clinical course of multiple sclerosis: results of an international survey. National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis. Neurology 46:907–911PubMedCrossRefGoogle Scholar
  10. 10.
    Weinshenker BG, Bass B, Rice GP, Noseworthy J, Carriere W, Baskerville J, Ebers GC (1989) The natural history of multiple sclerosis: a geographically based study. 2. Predictive value of the early clinical course. Brain 112(Pt 6):1419–1428PubMedCrossRefGoogle Scholar
  11. 11.
    Vukusic S, Confavreux C (2003) Prognostic factors for progression of disability in the secondary progressive phase of multiple sclerosis. J Neurol Sci 206:135–137PubMedCrossRefGoogle Scholar
  12. 12.
    Myhr KM, Riise T, Vedeler C, Nortvedt MW, Gronning R, Midgard R, Nyland HI (2001) Disability and prognosis in multiple sclerosis: demographic and clinical variables important for the ability to walk and awarding of disability pension. Mult Scler 7:59–65PubMedCrossRefGoogle Scholar
  13. 13.
    Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sorensen PS, Thompson AJ, Wolinsky JS, Balcer LJ, Banwell B, Barkhof F, Bebo B, Calabresi PA Jr, Clanet M, Comi G, Fox RJ, Freedman MS, Goodman AD, Inglese M, Kappos L, Kieseier BC, Lincoln JA, Lubetzki C, Miller AE, Montalban X, O’Connor PW, Petkau J, Pozzilli C, Rudick RA, Sormani MP, Stuve O, Waubant E, Polman CH (2014) Defining the clinical course of multiple sclerosis: The 2013 revisions. Neurology 83:278–286PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Koch M, Kingwell E, Rieckmann P, Tremlett H (2010) The natural history of secondary progressive multiple sclerosis. J Neurol Neurosurg Psychiatry 81:1039–1043PubMedCrossRefGoogle Scholar
  15. 15.
    Koch M, Kingwell E, Rieckmann P, Tremlett H (2009) The natural history of primary progressive multiple sclerosis. Neurology 73:1996–2002PubMedCrossRefGoogle Scholar
  16. 16.
    Andersson PB, Waubant E, Gee L, Goodkin DE (1999) Multiple sclerosis that is progressive from the time of onset: clinical characteristics and progression of disability. Arch Neurol 56:1138–1142PubMedCrossRefGoogle Scholar
  17. 17.
    Lassmann H, VAN Horssen J, Mahad D (2012) Progressive multiple sclerosis: pathology and pathogenesis. Nat Rev Neurol 8:647–656PubMedCrossRefGoogle Scholar
  18. 18.
    Lassmann H, Bruck W, Lucchinetti CF (2007) The immunopathology of multiple sclerosis: an overview. Brain Pathol 17:210–218PubMedCrossRefGoogle Scholar
  19. 19.
    Ebers GC (2004) Natural history of primary progressive multiple sclerosis. Mult Scler 10(Suppl 1):8–13, discussion S13-5CrossRefGoogle Scholar
  20. 20.
    Benedict RH, Fazekas F (2009) Benign or not benign MS: a role for routine neuropsychological assessment? Neurology 73:494–495PubMedCrossRefGoogle Scholar
  21. 21.
    Stys PK, Zamponi GW, VAN Minnen J, Geurts JJ (2012) Will the real multiple sclerosis please stand up? Nat Rev Neurosci 13:507–514PubMedCrossRefGoogle Scholar
  22. 22.
    Frischer JM, Bramow S, Dal-Bianco A, Lucchinetti CF, Rauschka H, Schmidbauer M, Laursen H, Sorensen PS, Lassmann H (2009) The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 132:1175–1189PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Babbe H, Roers A, Waisman A, Lassmann H, Goebels N, Hohlfeld R, Friese M, Schroder R, Deckert M, Schmidt S, Ravid R, Rajewsky K (2000) Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J Exp Med 192:393–404PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Ozawa K, Suchanek G, Breitschopf H, Bruck W, Budka H, Jellinger K, Lassmann H (1994) Patterns of oligodendroglia pathology in multiple sclerosis. Brain 117(Pt 6):1311–1322PubMedCrossRefGoogle Scholar
  25. 25.
    Serafini B, Rosicarelli B, Magliozzi R, Stigliano E, Aloisi F (2004) Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol 14:164–174PubMedCrossRefGoogle Scholar
  26. 26.
    Lassmann H (2011) Review: the architecture of inflammatory demyelinating lesions: implications for studies on pathogenesis. Neuropathol Appl Neurobiol 37:698–710PubMedCrossRefGoogle Scholar
  27. 27.
    Geurts JJ, Stys PK, Minagar A, Amor S, Zivadinov R (2009) Gray matter pathology in (chronic) MS: modern views on an early observation. J Neurol Sci 282:12–20PubMedCrossRefGoogle Scholar
  28. 28.
    Lassmann H (2014) Mechanisms of white matter damage in multiple sclerosis. Glia 62(11):1816–1830PubMedCrossRefGoogle Scholar
  29. 29.
    Hauser SL, Oksenberg JR (2006) The neurobiology of multiple sclerosis: genes, inflammation, and neurodegeneration. Neuron 52:61–76PubMedCrossRefGoogle Scholar
  30. 30.
    Trapp BD, Nave KA (2008) Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci 31:247–269PubMedCrossRefGoogle Scholar
  31. 31.
    Meinl E, Krumbholz M, Derfuss T, Junker A, Hohlfeld R (2008) Compartmentalization of inflammation in the CNS: a major mechanism driving progressive multiple sclerosis. J Neurol Sci 274:42–44PubMedCrossRefGoogle Scholar
  32. 32.
    Calabrese M, Rocca MA, Atzori M, Mattisi I, Favaretto A, Perini P, Gallo P, Filippi M (2010) A 3-year magnetic resonance imaging study of cortical lesions in relapse-onset multiple sclerosis. Ann Neurol 67:376–383PubMedGoogle Scholar
  33. 33.
    Calabrese M, Filippi M, Gallo P (2010) Cortical lesions in multiple sclerosis. Nat Rev Neurol 6:438–444PubMedCrossRefGoogle Scholar
  34. 34.
    Gilmore CP, Donaldson I, Bo L, Owens T, Lowe J, Evangelou N (2009) Regional variations in the extent and pattern of grey matter demyelination in multiple sclerosis: a comparison between the cerebral cortex, cerebellar cortex, deep grey matter nuclei and the spinal cord. J Neurol Neurosurg Psychiatry 80:182–187PubMedCrossRefGoogle Scholar
  35. 35.
    Reynolds R, Roncaroli F, Nicholas R, Radotra B, Gveric D, Howell O (2011) The neuropathological basis of clinical progression in multiple sclerosis. Acta Neuropathol 122:155–170PubMedCrossRefGoogle Scholar
  36. 36.
    Magliozzi R, Howell O, Vora A, Serafini B, Nicholas R, Puopolo M, Reynolds R, Aloisi F (2007) Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 130:1089–1104PubMedCrossRefGoogle Scholar
  37. 37.
    Magliozzi R, Howell OW, Reeves C, Roncaroli F, Nicholas R, Serafini B, Aloisi F, Reynolds R (2010) A Gradient of neuronal loss and meningeal inflammation in multiple sclerosis. Ann Neurol 68:477–493PubMedCrossRefGoogle Scholar
  38. 38.
    Filippi M, Rocca MA, DE Stefano N, Enzinger C, Fisher E, Horsfield MA, Inglese M, Pelletier D, Comi G (2011) Magnetic resonance techniques in multiple sclerosis: the present and the future. Arch Neurol 68:1514–1520PubMedCrossRefGoogle Scholar
  39. 39.
    Seewann A, Vrenken H, Kooi EJ, VAN DER Valk P, Knol DL, Polman CH, Pouwels PJ, Barkhof F, Geurts JJ (2011) Imaging the tip of the iceberg: visualization of cortical lesions in multiple sclerosis. Mult Scler 17:1202–1210PubMedCrossRefGoogle Scholar
  40. 40.
    DE Stefano N, Filippi M (2007) MR spectroscopy in multiple sclerosis. J Neuroimaging 17(Suppl 1):31S–35SPubMedCrossRefGoogle Scholar
  41. 41.
    Gass A, Richards TL (2013) Serial proton magnetic resonance spectroscopy of normal-appearing gray and white matter in MS. Neurology 80:17–18PubMedCrossRefGoogle Scholar
  42. 42.
    Lin A, Ross BD, Harris K, Wong W (2005) Efficacy of proton magnetic resonance spectroscopy in neurological diagnosis and neurotherapeutic decision making. NeuroRx 2:197–214PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Arnold DL, Matthews PM, Francis G, Antel J (1990) Proton magnetic resonance spectroscopy of human brain in vivo in the evaluation of multiple sclerosis: assessment of the load of disease. Magn Reson Med 14:154–159PubMedCrossRefGoogle Scholar
  44. 44.
    Miller DH, Thompson AJ, Filippi M (2003) Magnetic resonance studies of abnormalities in the normal appearing white matter and grey matter in multiple sclerosis. J Neurol 250:1407–1419PubMedCrossRefGoogle Scholar
  45. 45.
    Bakshi R, Thompson AJ, Rocca MA, Pelletier D, Dousset V, Barkhof F, Inglese M, Guttmann CR, Horsfield MA, Filippi M (2008) MRI in multiple sclerosis: current status and future prospects. Lancet Neurol 7:615–625PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Moffett JR, Ross B, Arun P, Madhavarao CN, Namboodiri AM (2007) N-Acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog Neurobiol 81:89–131PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    DE Stefano N, Filippi M, Miller D, Pouwels PJ, Rovira A, Gass A, Enzinger C, Matthews PM, Arnold DL (2007) Guidelines for using proton MR spectroscopy in multicenter clinical MS studies. Neurology 69:1942–1952PubMedCrossRefGoogle Scholar
  48. 48.
    Moore GR, Laule C (2012) Neuropathologic correlates of magnetic resonance imaging in multiple sclerosis. J Neuropathol Exp Neurol 71:762–778PubMedCrossRefGoogle Scholar
  49. 49.
    Muhlert N, Atzori M, DE Vita E, Thomas DL, Samson RS, Wheeler-Kingshott CA, Geurts JJ, Miller DH, Thompson AJ, Ciccarelli O (2014) 2014. Memory in multiple sclerosis is linked to glutamate concentration in grey matter regions. J Neurol Neurosurg Psychiatry 85(8):833–839PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Srinivasan R, Sailasuta N, Hurd R, Nelson S, Pelletier D (2005) Evidence of elevated glutamate in multiple sclerosis using magnetic resonance spectroscopy at 3T. Brain 128:1016–1025PubMedCrossRefGoogle Scholar
  51. 51.
    VAN Horssen J, Witte ME, Ciccarelli O (2012) The role of mitochondria in axonal degeneration and tissue repair in MS. Mult Scler 18:1058–1067PubMedCrossRefGoogle Scholar
  52. 52.
    Brand A, Richter-Landsberg C, Leibfritz D (1993) Multinuclear NMR studies on the energy metabolism of glial and neuronal cells. Dev Neurosci 15:289–298PubMedCrossRefGoogle Scholar
  53. 53.
    Davie CA, Hawkins CP, Barker GJ, Brennan A, Tofts PS, Miller DH, McDonald WI (1993) Detection of myelin breakdown products by proton magnetic resonance spectroscopy. Lancet 341:630–631PubMedCrossRefGoogle Scholar
  54. 54.
    Solanky BS, Abdel-Aziz K, Yiannakas MC, Berry AM, Ciccarelli O, Wheeler-Kingshott CA (2013) In vivo magnetic resonance spectroscopy detection of combined glutamate-glutamine in healthy upper cervical cord at 3T. NMR Biomed 26:357–366PubMedCrossRefGoogle Scholar
  55. 55.
    Ciccarelli O, Altmann DR, Mclean MA, Wheeler-Kingshott CA, Wimpey K, Miller DH, Thompson AJ (2010) Spinal cord repair in MS: does mitochondrial metabolism play a role? Neurology 74:721–727PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Ciccarelli O, Toosy AT, DE Stefano N, Wheeler-Kingshott CA, Miller DH, Thompson AJ (2010) Assessing neuronal metabolism in vivo by modeling imaging measures. J Neurosci 30:15030–15033PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Vrenken H, Barkhof F, Uitdehaag BM, Castelijns JA, Polman CH, Pouwels PJ (2005) MR spectroscopic evidence for glial increase but not for neuro-axonal damage in MS normal-appearing white matter. Magn Reson Med 53:256–266PubMedCrossRefGoogle Scholar
  58. 58.
    Tiberio M, Chard DT, Altmann DR, Davies G, Griffin CM, Mclean MA, Rashid W, Sastre-Garriga J, Thompson AJ, Miller DH (2006) Metabolite changes in early relapsing-remitting multiple sclerosis. A two year follow-up study. J Neurol 253:224–230PubMedCrossRefGoogle Scholar
  59. 59.
    Chard DT, Griffin CM, Mclean MA, Kapeller P, Kapoor R, Thompson AJ, Miller DH (2002) Brain metabolite changes in cortical grey and normal-appearing white matter in clinically early relapsing-remitting multiple sclerosis. Brain 125:2342–2352PubMedCrossRefGoogle Scholar
  60. 60.
    Kirov II, Tal A, Babb JS, Herbert J, Gonen O (2013) Serial proton MR spectroscopy of gray and white matter in relapsing-remitting MS. Neurology 80:39–46PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Miller TR, Mohan S, Choudhri AF, Gandhi D, Jindal G (2014) Advances in multiple sclerosis and its variants: conventional and newer imaging techniques. Radiol Clin North Am 52:321–336PubMedCrossRefGoogle Scholar
  62. 62.
    Wattjes MP, Harzheim M, Lutterbey GG, Klotz L, Schild HH, Traber F (2007) Axonal damage but no increased glial cell activity in the normal-appearing white matter of patients with clinically isolated syndromes suggestive of multiple sclerosis using high-field magnetic resonance spectroscopy. AJNR Am J Neuroradiol 28:1517–1522PubMedCrossRefGoogle Scholar
  63. 63.
    Fernando KT, Mclean MA, Chard DT, Macmanus DG, Dalton CM, Miszkiel KA, Gordon RM, Plant GT, Thompson AJ, Miller DH (2004) Elevated white matter myo-inositol in clinically isolated syndromes suggestive of multiple sclerosis. Brain 127:1361–1369PubMedCrossRefGoogle Scholar
  64. 64.
    Davies SE, Newcombe J, Williams SR, McDonald WI, Clark JB (1995) High resolution proton NMR spectroscopy of multiple sclerosis lesions. J Neurochem 64:742–748PubMedCrossRefGoogle Scholar
  65. 65.
    Inglese M, Li BS, Rusinek H, Babb JS, Grossman RI, Gonen O (2003) Diffusely elevated cerebral choline and creatine in relapsing-remitting multiple sclerosis. Magn Reson Med 50:190–195PubMedCrossRefGoogle Scholar
  66. 66.
    Bitsch A, Bruhn H, Vougioukas V, Stringaris A, Lassmann H, Frahm J, Bruck W (1999) Inflammatory CNS demyelination: histopathologic correlation with in vivo quantitative proton MR spectroscopy. AJNR Am J Neuroradiol 20:1619–1627PubMedGoogle Scholar
  67. 67.
    Miller DH (2014) 2014. Magnetic resonance spectroscopy: a possible in vivo marker of disease progression for multiple sclerosis? JAMA Neurol 71(7):828–830PubMedCrossRefGoogle Scholar
  68. 68.
    Pan JW, Hetherington HP, Vaughan JT, Mitchell G, Pohost GM, Whitaker JN (1996) Evaluation of multiple sclerosis by 1H spectroscopic imaging at 4.1T. Magn Reson Med 36:72–77PubMedCrossRefGoogle Scholar
  69. 69.
    Caramanos Z, Narayanan S, Arnold DL (2005) 1H-MRS quantification of tNA and tCr in patients with multiple sclerosis: a meta-analytic review. Brain 128:2483–2506PubMedCrossRefGoogle Scholar
  70. 70.
    Rooney WD, Goodkin DE, Schuff N, Meyerhoff DJ, Norman D, Weiner MW (1997) 1H MRSI of normal appearing white matter in multiple sclerosis. Mult Scler 3:231–237PubMedCrossRefGoogle Scholar
  71. 71.
    Suhy J, Rooney WD, Goodkin DE, Capizzano AA, Soher BJ, Maudsley AA, Waubant E, Andersson PB, Weiner MW (2000) 1H MRSI comparison of white matter and lesions in primary progressive and relapsing-remitting MS. Mult Scler 6:148–155PubMedPubMedCentralGoogle Scholar
  72. 72.
    Filippi M, Rocca MA (2005) MRI evidence for multiple sclerosis as a diffuse disease of the central nervous system. J Neurol 252(Suppl 5):v16–v24PubMedCrossRefGoogle Scholar
  73. 73.
    Geurts JJ, Reuling IE, Vrenken H, Uitdehaag BM, Polman CH, Castelijns JA, Barkhof F, Pouwels PJ (2006) MR spectroscopic evidence for thalamic and hippocampal, but not cortical, damage in multiple sclerosis. Magn Reson Med 55:478–483PubMedCrossRefGoogle Scholar
  74. 74.
    Lucchinetti C, Bruck W (2004) The pathology of primary progressive multiple sclerosis. Mult Scler 10(Suppl 1):S23–S30PubMedCrossRefGoogle Scholar
  75. 75.
    Filippi M, Rovaris M, Rocca MA (2004) Imaging primary progressive multiple sclerosis: the contribution of structural, metabolic, and functional MRI techniques. Mult Scler 10(Suppl 1):S36–S44, discussion S44-5PubMedCrossRefGoogle Scholar
  76. 76.
    Rovaris M, Bozzali M, Santuccio G, Ghezzi A, Caputo D, Montanari E, Bertolotto A, Bergamaschi R, Capra R, Mancardi G, Martinelli V, Comi G, Filippi M (2001) In vivo assessment of the brain and cervical cord pathology of patients with primary progressive multiple sclerosis. Brain 124:2540–2549PubMedCrossRefGoogle Scholar
  77. 77.
    Narayanan S, DE Stefano N, Francis GS, Arnaoutelis R, Caramanos Z, Collins DL, Pelletier D, Arnason BGW, Antel JP, Arnold DL (2001) Axonal metabolic recovery in multiple sclerosis patients treated with interferon beta-1b. J Neurol 248:979–986PubMedCrossRefGoogle Scholar
  78. 78.
    Ciccarelli O, Thomas DL, DE Vita E, Wheeler-Kingshott CA, Kachramanoglou C, Kapoor R, Leary S, Matthews L, Palace J, Chard D, Miller DH, Toosy AT, Thompson AJ (2013) 2013. Low myo-inositol indicating astrocytic damage in a case series of neuromyelitis optica. Ann Neurol 74(2):301–305PubMedGoogle Scholar
  79. 79.
    Sajja BR, Wolinsky JS, Narayana PA (2009) Proton magnetic resonance spectroscopy in multiple sclerosis. Neuroimaging Clin N Am 19:45–58PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Marignier R, Nicolle A, Watrin C, Touret M, Cavagna S, Varrin-Doyer M, Cavillon G, Rogemond V, Confavreux C, Honnorat J, Giraudon P (2010) Oligodendrocytes are damaged by neuromyelitis optica immunoglobulin G via astrocyte injury. Brain 133:2578–2591PubMedCrossRefGoogle Scholar
  81. 81.
    Rovira A, Alonso J (2013) 1H magnetic resonance spectroscopy in multiple sclerosis and related disorders. Neuroimaging Clin N Am 23:459–474PubMedCrossRefGoogle Scholar
  82. 82.
    Majos C, Aguilera C, Alonso J, Julia-Sape M, Castaner S, Sanchez JJ, Samitier A, Leon A, Rovira A, Arus C (2009) Proton MR spectroscopy improves discrimination between tumor and pseudotumoral lesion in solid brain masses. AJNR Am J Neuroradiol 30:544–551PubMedCrossRefGoogle Scholar
  83. 83.
    Moore F, Okuda DT (2009) Incidental MRI anomalies suggestive of multiple sclerosis: the radiologically isolated syndrome. Neurology 73:1714PubMedCrossRefGoogle Scholar
  84. 84.
    Stromillo ML, Giorgio A, Rossi F, Battaglini M, Hakiki B, Malentacchi G, Santangelo M, Gasperini C, Bartolozzi ML, Portaccio E, Amato MP, DE Stefano N (2013) Brain metabolic changes suggestive of axonal damage in radiologically isolated syndrome. Neurology 80:2090–2094PubMedCrossRefGoogle Scholar
  85. 85.
    Sbardella E, Tomassini V, Stromillo ML, Filippini N, Battaglini M, Ruggieri S, Ausili Cefaro L, Raz E, Gasperini C, Sormani MP, Pantano P, Pozzilli C, De Stefano N (2011) Pronounced focal and diffuse brain damage predicts short-term disease evolution in patients with clinically isolated syndrome suggestive of multiple sclerosis. Mult Scler 17:1432–1440PubMedCrossRefGoogle Scholar
  86. 86.
    Wattjes MP, Harzheim M, Lutterbey GG, Bogdanow M, Schmidt S, Schild HH, Traber F (2008) Prognostic value of high-field proton magnetic resonance spectroscopy in patients presenting with clinically isolated syndromes suggestive of multiple sclerosis. Neuroradiology 50:123–129PubMedCrossRefGoogle Scholar
  87. 87.
    Kapeller P, Brex PA, Chard D, Dalton C, Griffin CM, Mclean MA, Parker GJ, Thompson AJ, Miller DH (2002) Quantitative 1H MRS imaging 14 years after presenting with a clinically isolated syndrome suggestive of multiple sclerosis. Mult Scler 8:207–210PubMedCrossRefGoogle Scholar
  88. 88.
    Narayana PA (2005) Magnetic resonance spectroscopy in the monitoring of multiple sclerosis. J Neuroimaging 15:46S–57SPubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Achtnichts L, Gonen O, Rigotti DJ, Babb JS, Naegelin Y, Penner IK, Bendfeldt K, Hirsch J, Amann M, Kappos L, Gass A (2013) Global N-acetylaspartate concentration in benign and non-benign multiple sclerosis patients of long disease duration. Eur J Radiol 82:e848–e852PubMedCrossRefGoogle Scholar
  90. 90.
    Ge Y, Gonen O, Inglese M, Babb JS, Markowitz CE, Grossman RI (2004) Neuronal cell injury precedes brain atrophy in multiple sclerosis. Neurology 62:624–627PubMedCrossRefGoogle Scholar
  91. 91.
    Lassmann H (2013) Pathology and disease mechanisms in different stages of multiple sclerosis. J Neurol Sci 333:1–4PubMedCrossRefGoogle Scholar
  92. 92.
    Llufriu S, Kornak J, Ratiney H, Oh J, Brenneman D, Cree BA, Sampat M, Hauser SL, Nelson SJ, Pelletier D (2014) 2014. Magnetic resonance spectroscopy markers of disease progression in multiple sclerosis. JAMA Neurol 71(7):840–847PubMedCrossRefGoogle Scholar
  93. 93.
    Sajja BR, Narayana PA, Wolinsky JS, Ahn CW (2008) Longitudinal magnetic resonance spectroscopic imaging of primary progressive multiple sclerosis patients treated with glatiramer acetate: multicenter study. Mult Scler 14:73–80PubMedCrossRefGoogle Scholar
  94. 94.
    DE Stefano N, Bartolozzi ML, Guidi L, Stromillo ML, Federico A (2005) Magnetic resonance spectroscopy as a measure of brain damage in multiple sclerosis. J Neurol Sci 233:203–208PubMedCrossRefGoogle Scholar
  95. 95.
    Matthews PM, Arnold DL (2001) Magnetic resonance imaging of multiple sclerosis: new insights linking pathology to clinical evolution. Curr Opin Neurol 14:279–287PubMedCrossRefGoogle Scholar
  96. 96.
    Trapp BD, Ransohoff R, Rudick R (1999) Axonal pathology in multiple sclerosis: relationship to neurologic disability. Curr Opin Neurol 12:295–302PubMedCrossRefGoogle Scholar
  97. 97.
    DE Stefano N, Matthews PM, Antel JP, Preul M, Francis G, Arnold DL (1995) Chemical pathology of acute demyelinating lesions and its correlation with disability. Ann Neurol 38:901–909PubMedCrossRefGoogle Scholar
  98. 98.
    DE Stefano N, Matthews PM, Narayanan S, Francis GS, Antel JP, Arnold DL (1997) Axonal dysfunction and disability in a relapse of multiple sclerosis: longitudinal study of a patient. Neurology 49:1138–1141PubMedCrossRefGoogle Scholar
  99. 99.
    Aboul-Enein F, Krssak M, Hoftberger R, Prayer D, Kristoferitsch W (2010) Reduced NAA-levels in the NAWM of patients with MS is a feature of progression. A study with quantitative magnetic resonance spectroscopy at 3 Tesla. PLoS One 5:e11625PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Sastre-Garriga J, Ingle GT, Chard DT, Ramio-Torrenta L, Mclean MA, Miller DH, Thompson AJ (2005) Metabolite changes in normal-appearing gray and white matter are linked with disability in early primary progressive multiple sclerosis. Arch Neurol 62:569–573PubMedCrossRefGoogle Scholar
  101. 101.
    Tellez N, Alonso J, Rio J, Tintore M, Nos C, Montalban X, Rovira A (2008) The basal ganglia: a substrate for fatigue in multiple sclerosis. Neuroradiology 50:17–23PubMedCrossRefGoogle Scholar
  102. 102.
    Langdon DW (2011) Cognition in multiple sclerosis. Curr Opin Neurol 24:244–249PubMedCrossRefGoogle Scholar
  103. 103.
    Calabrese M, Rinaldi F, Mattisi I, Grossi P, Favaretto A, Atzori M, Bernardi V, Barachino L, Romualdi C, Rinaldi L, Perini P, Gallo P (2010) Widespread cortical thinning characterizes patients with MS with mild cognitive impairment. Neurology 74:321–328PubMedCrossRefGoogle Scholar
  104. 104.
    Sicotte NL, Kern KC, Giesser BS, Arshanapalli A, Schultz A, Montag M, Wang H, Bookheimer SY (2008) Regional hippocampal atrophy in multiple sclerosis. Brain 131:1134–1141PubMedCrossRefGoogle Scholar
  105. 105.
    Gadea M, Martinez-Bisbal MC, Marti-Bonmati L, Espert R, Casanova B, Coret F, Celda B (2004) Spectroscopic axonal damage of the right locus coeruleus relates to selective attention impairment in early stage relapsing-remitting multiple sclerosis. Brain 127:89–98PubMedCrossRefGoogle Scholar
  106. 106.
    Neale JH, Olszewski RT, Zuo D, Janczura KJ, Profaci CP, Lavin KM, Madore JC, Bzdega T (2011) Advances in understanding the peptide neurotransmitter NAAG and appearance of a new member of the NAAG neuropeptide family. J Neurochem 118:490–498PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Rahn KA, Watkins CC, Alt J, Rais R, Stathis M, Grishkan I, Crainiceau CM, Pomper MG, Rojas C, Pletnikov MV, Calabresi PA, Brandt J, Barker PB, Slusher BS, Kaplin AI (2012) Inhibition of glutamate carboxypeptidase II (GCPII) activity as a treatment for cognitive impairment in multiple sclerosis. Proc Natl Acad Sci U S A 109:20101–20106PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Marliani AF, Clementi V, Albini Riccioli L, Agati R, Carpenzano M, Salvi F, Leonardi M (2010) Quantitative cervical spinal cord 3T proton MR spectroscopy in multiple sclerosis. AJNR Am J Neuroradiol 31:180–184PubMedCrossRefGoogle Scholar
  109. 109.
    Ciccarelli O, Wheeler-Kingshott CA, Mclean MA, Cercignani M, Wimpey K, Miller DH, Thompson AJ (2007) Spinal cord spectroscopy and diffusion-based tractography to assess acute disability in multiple sclerosis. Brain 130:2220–2231PubMedCrossRefGoogle Scholar
  110. 110.
    Blamire AM, Cader S, Lee M, Palace J, Matthews PM (2007) Axonal damage in the spinal cord of multiple sclerosis patients detected by magnetic resonance spectroscopy. Magn Reson Med 58:880–885PubMedCrossRefGoogle Scholar
  111. 111.
    De Stefano N, Matthews PM, Fu L, Narayanan S, Stanley J, Francis GS, Antel JP, Arnold DL (1998) Axonal damage correlates with disability in patients with relapsing-remitting multiple sclerosis. Results of a longitudinal magnetic resonance spectroscopy study. Brain 121(Pt 8):1469–1477PubMedCrossRefGoogle Scholar
  112. 112.
    Wheeler-Kingshott CA, Stroman PW, Schwab JM, Bacon M, Bosma R, Brooks J, Cadotte DW, Carlstedt T, Ciccarelli O, Cohen-Adad J, Curt A, Evangelou N, Fehlings MG, Filippi M, Kelley BJ, Kollias S, MacKay A, Porro CA, Smith S, Strittmatter SM, Summers P, Thompson AJ, Tracey I (2014) The current state-of-the-art of spinal cord imaging: applications. Neuroimage 84:1082–1093PubMedCrossRefGoogle Scholar
  113. 113.
    Abdel Aziz K, Solanky B, Wheeler-Kingshott C, Cawley N, Yiannakas M, Thompson A, Ciccarelli O. (2013) Evidence for early neuronal damage in the cervical cord of patients with primary progressive MS. ECTRIMS. Multiple Sclerosis J 2013. Abstract No: 197Google Scholar
  114. 114.
    Stroman PW, Wheeler-Kingshott C, Bacon M, Schwab JM, Bosma R, Brooks J, Cadotte D, Carlstedt T, Ciccarelli O, Cohen-Adad J, Curt A, Evangelou N, Fehlings MG, Filippi M, Kelley BJ, Kollias S, MacKay A, Porro CA, Smith S, Strittmatter SM, Summers P, Tracey I (2014) The current state-of-the-art of spinal cord imaging: methods. Neuroimage 84:1070–1081PubMedCrossRefGoogle Scholar
  115. 115.
    Bellenberg B, Busch M, Trampe N, Gold R, Chan A, Lukas C (2013) 1H-magnetic resonance spectroscopy in diffuse and focal cervical cord lesions in multiple sclerosis. Eur Radiol 23:3379–3392PubMedCrossRefGoogle Scholar
  116. 116.
    Hermann D, Weber-Fahr W, Sartorius A, Hoerst M, Frischknecht U, Tunc-Skarka N, Perreau-Lenz S, Hansson AC, Krumm B, Kiefer F, Spanagel R, Mann K, Ende G, Sommer WH (2012) Translational magnetic resonance spectroscopy reveals excessive central glutamate levels during alcohol withdrawal in humans and rats. Biol Psychiatry 71:1015–1021PubMedCrossRefGoogle Scholar
  117. 117.
    Denic A, Johnson AJ, Bieber AJ, Warrington AE, Rodriguez M, Pirko I (2011) The relevance of animal models in multiple sclerosis research. Pathophysiology 18:21–29PubMedCrossRefGoogle Scholar
  118. 118.
    Lee MR, Denic A, Hinton DJ, Mishra PK, Choi DS, Pirko I, Rodriguez M, Macura SI (2012) Preclinical 1H-MRS neurochemical profiling in neurological and psychiatric disorders. Bioanalysis 4:1787–1804PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Chen CC, Zechariah A, Hsu YH, Chen HW, Yang LC, Chang C (2008) Neuroaxonal ion dyshomeostasis of the normal-appearing corpus callosum in experimental autoimmune encephalomyelitis. Exp Neurol 210:322–330PubMedCrossRefGoogle Scholar
  120. 120.
    Brenner RE, Munro PM, Williams SC, Bell JD, Barker GJ, Hawkins CP, Landon DN, McDonald WI (1993) The proton NMR spectrum in acute EAE: the significance of the change in the Cho:Cr ratio. Magn Reson Med 29:737–745PubMedCrossRefGoogle Scholar
  121. 121.
    Rigotti DJ, Inglese M, Kirov II, Gorynski E, Perry NN, Babb JS, Herbert J, Grossman RI, Gonen O (2012) Two-year serial whole-brain N-acetyl-L-aspartate in patients with relapsing-remitting multiple sclerosis. Neurology 78:1383–1389PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Denic A, Pirko I, Wootla B, Bieber A, Macura S, Rodriguez M (2012) Deletion of beta-2-microglobulin ameliorates spinal cord lesion load and promotes recovery of brainstem NAA levels in a murine model of multiple sclerosis. Brain Pathol 22:698–708PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Kan HE, Techawiboonwong A, VAN Osch MJ, Versluis MJ, Deelchand DK, Henry PG, Marjanska M, VAN Buchem MA, Webb AG, Ronen I (2012) Differences in apparent diffusion coefficients of brain metabolites between grey and white matter in the human brain measured at 7T. Magn Reson Med 67:1203–1209PubMedCrossRefGoogle Scholar
  124. 124.
    Wood ET, Ronen I, Techawiboonwong A, Jones CK, Barker PB, Calabresi P, Harrison D, Reich DS (2012) Investigating axonal damage in multiple sclerosis by diffusion tensor spectroscopy. J Neurosci 32:6665–6669PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Hattingen E, Magerkurth J, Pilatus U, Hubers A, Wahl M, Ziemann U (2011) Combined 1H and 31P spectroscopy provides new insights into the pathobiochemistry of brain damage in multiple sclerosis. NMR Biomed 24:536–546PubMedCrossRefGoogle Scholar
  126. 126.
    Srinivasan R, Ratiney H, Hammond-Rosenbluth KE, Pelletier D, Nelson SJ (2010) MR spectroscopic imaging of glutathione in the white and gray matter at 7T with an application to multiple sclerosis. Magn Reson Imaging 28:163–170PubMedCrossRefGoogle Scholar
  127. 127.
    Carvalho AN, Lim JL, Nijland PG, Witte ME, Van Horssen J (2014) Glutathione in multiple sclerosis: More than just an antioxidant? Mult Scler. 20:1425–1431Google Scholar
  128. 128.
    Bhattacharyya PK, Phillips MD, Stone LA, Bermel RA, Lowe MJ (2013) Sensorimotor cortex gamma-aminobutyric acid concentration correlates with impaired performance in patients with MS. AJNR Am J Neuroradiol 34:1733–1739PubMedCrossRefGoogle Scholar
  129. 129.
    Hock A, Wilm B, Zandomeneghi G, Ampanozi G, Franckenberg S, De Zanche N, Nordmeyer-Maßner J, Spyros S. Kollias, Kramer T, Thali M, Ernst M, and Henning A. (2014) Detection of GABA, Aspartate and Glutathione in the Human Spinal Cord. ISMRM. Abstract No: 1712Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.NMR Research Unit, Queen Square MS CentreUCL Institute of NeurologyLondonUK
  2. 2.NIHR, UCL/UCLH Biomedical Research CentreLondonUK

Personalised recommendations