Advertisement

Magnetic Resonance Spectroscopy in Parkinsonian Disorders

Chapter
Part of the Contemporary Clinical Neuroscience book series (CCNE)

Abstract

Parkinsonian disorders are a group of mostly neurodegenerative diseases that affect the basal ganglia. Symptoms include slowness of movement, increased muscle tone, and changes in walking and balance. The most common form of parkinsonism is idiopathic Parkinson’s disease. Currently, only symptomatic treatments are available. These treatments can improve symptoms and quality of life, but do not prevent neurodegeneration or slow the course of disease.

By detecting metabolic changes in specific brain regions, magnetic resonance spectroscopy (MRS) shows promise in helping to distinguish between different types of parkinsonian disorders, to aid in early diagnosis, and potentially to track disease progression. However, heterogeneous results are common in the literature to date, in part due to differences in patient characteristics, brain regions examined, evolving MRS techniques, and the effects of medications.

This chapter reviews the clinical and pathological features of parkinsonian disorders and MRS studies in these disorders and describes the use of animal models to further investigate the connection between MRS findings and pathological brain changes.

Keywords

Parkinson’s disease Parkinsonism Alpha-synuclein Progressive supranuclear palsy Multiple system atrophy Dementia with Lewy bodies Corticobasal degeneration 

References

  1. 1.
    Braak H, Torch S, Lambeng N (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211PubMedCrossRefGoogle Scholar
  2. 2.
    Duncan GW, Khoo TK, Yarnall AJ et al (2014) Health-related quality of life in early Parkinson’s disease: the impact of nonmotor symptoms. Mov Disord 29:195–202PubMedCrossRefGoogle Scholar
  3. 3.
    Guttman JM, Burkholder JJ, Kish JS et al (1997) [11C]RTI-32 PET studies of the dopamine transporter in early dopa-naive Parkinson’s disease: Implications for the symptomatic threshold. Neurology 48:1578–1583PubMedCrossRefGoogle Scholar
  4. 4.
    Postuma RB, Aarsland D, Barone P et al (2012) Identifying prodromal Parkinson’s disease: pre-motor disorders in Parkinson's disease. Mov Disord 27:617–626. doi: 10.1002/mds.24996 PubMedCrossRefGoogle Scholar
  5. 5.
    Siderowf A, Lang AE (2012) Premotor Parkinson’s disease: concepts and definitions. Mov Disord 27:608–614PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Hughes A, Daniel S, Kilford L, Lees A (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55:181–184PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Goetz CG, Fahn S, Matrinez-Martin P et al (2007) Movement disorder society-sponsored revision of the unified Parkinson’s disease rating scale (MDS-UPDRS): process, format, and clinimetric testing plan. Mov Disord 22:41–47PubMedCrossRefGoogle Scholar
  8. 8.
    Hoehn M, Yahr M (1967) Parkinsonism: onset, progression and mortality. Neurology 17:427–442PubMedCrossRefGoogle Scholar
  9. 9.
    Kalia LV, Lang AE (2015) Parkinson’s disease. Lancet 386:896–912PubMedCrossRefGoogle Scholar
  10. 10.
    Wenning GK, Tison F, Seppi K et al (2004) Development and validation of the unified multiple system atrophy rating scale (UMSARS). Mov Disord 19:1391–1402PubMedCrossRefGoogle Scholar
  11. 11.
    Dickson DW (2007) Neuropathology of parkinsonian disease. In: Jankovic J, Tolosa E (eds) Park Dis Mov Disord, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 271–294Google Scholar
  12. 12.
    Golbe LI, Ohman-Strickland PA (2007) A clinical rating scale for progressive supranuclear palsy. Brain 130:1552–1565PubMedCrossRefGoogle Scholar
  13. 13.
    Couper J (1837) On the effects of black oxide of manganese when inhaled into the lungs. Br Ann Med Pharm, Vital Stat Gen Sci 1:41–42Google Scholar
  14. 14.
    Mena I, Marin O, Fuenzalida S, Cotzias G (1967) Chronic manganese poisoning. Clinical picture and manganese turnover. Neurology 17:128–136PubMedCrossRefGoogle Scholar
  15. 15.
    Cook D, Fahn S, Brait K (1974) Chronic manganese intoxication. Arch Neurol 30:59–64PubMedCrossRefGoogle Scholar
  16. 16.
    Bowler RM, Gysens S, Diamond E et al (2006) Manganese exposure: neuropsychological and neurological symptoms and effects in welders. Neurotoxicology 27:315–326. doi: 10.1016/j.neuro.2005.10.007 PubMedCrossRefGoogle Scholar
  17. 17.
    Racette BA, Aschner M, Guilarte TR et al (2012) Pathophysiology of manganese-associated neurotoxicity. Neurotoxicology 33:881–886. doi: 10.1016/j.neuro.2011.12.010 PubMedCrossRefGoogle Scholar
  18. 18.
    Long Z, Jiang Y-M, Li X-R et al (2014) Vulnerability of welders to manganese exposure—a neuroimaging study. Neurotoxicology 45:285–292. doi: 10.1016/j.neuro.2014.03.007 PubMedCrossRefGoogle Scholar
  19. 19.
    Hauser R, Zesiewicz T, Martinez C et al (1996) Blood manganese correlates with brain magnetic resonance imaging changes in patients with liver disease. Can J Neurol Sci 23:95–98PubMedCrossRefGoogle Scholar
  20. 20.
    Rose C, Butterworth RF, Zayed J et al (1999) Manganese deposition in basal ganglia structures results from both portal-systemic shunting and liver dysfunction. Gastroenterology 117:640–644. doi: 10.1016/S0016-5085(99)70457-9 PubMedCrossRefGoogle Scholar
  21. 21.
    Sikk K, Haldre S, Aquilonius S-M, Taba P (2011) Manganese-induced parkinsonism due to ephedrone abuse. Parkinsons Dis 2011:1–8. doi: 10.4061/2011/865319 CrossRefGoogle Scholar
  22. 22.
    Perl P, Olanow C (2007) The neuropathology of manganese-induced parkinsonism. J Neuropathol Exp Neurol 66:675–682PubMedCrossRefGoogle Scholar
  23. 23.
    Eriksson H, Tedroff J, Thuomas K-Å et al (1992) Manganese induced brain lesions in Macaca fascicularis as revealed by positron emission tomography and magnetic resonance imaging. Arch Toxicol 66:403–407PubMedCrossRefGoogle Scholar
  24. 24.
    Kim SH, Chang KH, Chi JG et al (1999) Sequential change of MR signal intensity of the brain after manganese administration in rabbits: Correlation with manganese concentration and histopathologic findings. Invest Radiol 34:383–393PubMedCrossRefGoogle Scholar
  25. 25.
    Olanow CW (2004) Manganese-induced parkinsonism and Parkinson’s disease. Ann N Y Acad Sci 1012:209–223. doi: 10.1196/annals.1306.018 PubMedCrossRefGoogle Scholar
  26. 26.
    Guilarte TR (2010) Manganese and Parkinson’s disease: a critical review and new findings. Environ Health Perspect 118:1071–1080. doi: 10.1289/ehp.0901748 PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    De Graff RA (2007) In vivo NMR spectroscopy: principles and techniques, 2nd edn. Wiley, HobokenCrossRefGoogle Scholar
  28. 28.
    Öz G, Iltis I, Hutter D et al (2011) Distinct neurochemical profiles of spinocerebellar ataxias 1, 2, 6, and cerebellar multiple system atrophy. Cerebellum 10:208–217PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Miller BL, Moats RA, Shonk T et al (1993) Alzheimer disease: depiction of increased cerebral myo-inositol with proton MR spectroscopy. Radiology 187:433–437PubMedCrossRefGoogle Scholar
  30. 30.
    Godbolt AK, Waldman AD, Macmanus DG et al (2006) MRS shows abnormalities before symptoms in familial Alzheimer disease. Neurology 66:718–722PubMedCrossRefGoogle Scholar
  31. 31.
    Kantarci K, Boeve BF, Wszolek ZK et al (2010) MRS in presymptomatic MAPT mutation carriers: a potential biomarker for tau-mediated pathology. Neurology 75:771–778PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Mullins PG, Mcgonigle DJ, O’Gorman RL et al (2014) Current practice in the use of MEGA-PRESS spectroscopy for the detection of GABA. Neuroimage 86:43–52PubMedCrossRefGoogle Scholar
  33. 33.
    Öz G, Terpstra M, Tkáč I et al (2006) Proton MRS of the unilateral substantia nigra in the human brain at 4 tesla: detection of high GABA concentrations. Magn Reson Med 55:296–301PubMedCrossRefGoogle Scholar
  34. 34.
    Near J, Andersson J, Maron E et al (2013) Unedited in vivo detection and quantification of [gamma]-aminobutyric acid in the occipital cortex using short-TE MRS at 3T. NMR Biomed 26:1353–1362PubMedCrossRefGoogle Scholar
  35. 35.
    Galvan A, Wichmann T (2007) GABAergic circuits in the basal ganglia and movement disorders. Prog Brain Res 160:287–312PubMedCrossRefGoogle Scholar
  36. 36.
    Hornykiewicz O (2001) Chemical neuroanatomy of the basal ganglia—normal and in Parkinson’s disease. J Chem Neuroanat 22:3–12PubMedCrossRefGoogle Scholar
  37. 37.
    Kish S, Rajput A, Gilbert J et al (1987) GABA-dopamine relationship in Parkinson’s disease striatum. Adv Neurol 45:75–77PubMedGoogle Scholar
  38. 38.
    Perry TL, Javoy-Agid F, Agid Y, Fibiger HC (1983) Striatal GABAergic neuronal activity is not reduced in Parkinson’s disease. J Neurochem 40:1120–1123PubMedCrossRefGoogle Scholar
  39. 39.
    Tanaka Y, Niijima K, Mizuno Y, Yoshida M (1986) Changes in gamma-aminobutyrate, glutamate, aspartate, glycine, and taurine contents in the striatum after unilateral nigrostriatal lesions in rats. Exp Neurol 91:259–268PubMedCrossRefGoogle Scholar
  40. 40.
    Terpstra M, Cheong I, Lyu T et al (2015) Test-retest reproducibility of neurochemical profiles with short-echo, single-voxel MR spectroscopy at 3T and 7T. Magn Reson Med. doi: 10.1002/mrm.26022 PubMedGoogle Scholar
  41. 41.
    Emir UE, Tuite PJ, Öz G (2012) Elevated pontine and putamenal GABA levels in mild-moderate Parkinson disease detected by 7 tesla proton MRS. PLoS One 7, e30918. doi: 10.1371/journal.pone.0030918 Google Scholar
  42. 42.
    Lewis S, Shine J, Duffy S et al (2012) Anterior cingulate integrity: executive and neuropsychiatric features in Parkinson’s disease. Mov Disord 27:1262–1267PubMedCrossRefGoogle Scholar
  43. 43.
    Weiduschat N, Mao X, Beal M et al (2015) Usefulness of proton and phosphorus MR spectroscopic imaging for early diagnosis of Parkinson’s disease. J Neuroimaging 25:105–110PubMedCrossRefGoogle Scholar
  44. 44.
    Gröger A, Chadzynski G, Godau J et al (2011) Three-dimensional magnetic resonance spectroscopic imaging in the substantia nigra of healthy controls and patients with Parkinson’s disease. Eur Radiol 21:1962–1969. doi: 10.1007/s00330-011-2123-5 PubMedCrossRefGoogle Scholar
  45. 45.
    O’Neill J, Schuff N, Marks WJ et al (2002) Quantitative 1H magnetic resonance spectroscopy and MRI of Parkinson’s disease. Mov Disord 17:917–927. doi: 10.1002/mds.10214 PubMedCrossRefGoogle Scholar
  46. 46.
    Dexter DT, Wells FR, Lees AJ et al (1989) Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson’s disease. J Neurochem 52:1830–1836. doi: 10.1111/j.1471-4159.1989.tb07264.x PubMedCrossRefGoogle Scholar
  47. 47.
    Berg D, Hochstrasser H, Schweitzer K, Riess O (2006) Disturbance of iron metabolism in Parkinson’s disease—ultrasonography as a biomarker. Neurotox Res 9:1–13PubMedCrossRefGoogle Scholar
  48. 48.
    Ulla M, Bonny J-M, Ouchchane L et al (2013) Is R-2* a new MRI biomarker for the progression of Parkinson’s disease? A longitudinal follow-up. PLoS One 8, e57904PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Mlynárik V, Gruber S, Moser E (2001) Proton T1 and T2 relaxation times of human brain metabolites at 3 Tesla. NMR Biomed 14:325–331. doi: 10.1002/nbm.713 PubMedCrossRefGoogle Scholar
  50. 50.
    Summerfield C, Gómez-Ansón B, Tolosa E et al (2002) Dementia in Parkinson disease. Arch Neurol. doi: 10.1001/archneur.59.9.1415 PubMedGoogle Scholar
  51. 51.
    Nie K, Zhang Y, Huang B et al (2013) Marked N-acetylaspartate and choline metabolite changes in Parkinson’s disease patients with mild cognitive impairment. Parkinsonism Relat Disord 19:329–334PubMedCrossRefGoogle Scholar
  52. 52.
    Kadota T, Horinouchi T, Kuroda C (2001) Development and aging of the cerebrum: assessment with proton MR spectroscopy. Am J Neuroradiol 22:128–135PubMedGoogle Scholar
  53. 53.
    Angelie E, Bonmartin A, Boudraa A et al (2001) Regional differences and metabolic changes in normal aging of the human brain: proton MR spectroscopic imaging study. Am J Neuroradiol 22:119–127PubMedGoogle Scholar
  54. 54.
    Holshouser BA, Komu M, Möller HE et al (1995) Localized proton NMR spectroscopy in the striatum of patients with idiopathic parkinson’s disease: a multicenter pilot study. Magn Reson Med 33:589–594PubMedCrossRefGoogle Scholar
  55. 55.
    Chaudhuri KR, Lemmens GM, Williams SCR et al (1996) Proton magnetic resonance spectroscopy of the striatum in Parkinson’s disease patients with motor response fluctuations. Parkinsonism Relat Disord 2:63–67PubMedCrossRefGoogle Scholar
  56. 56.
    Davie C, Wenning G, Barker G et al (1995) Differentiation of multiple system atrophy from idiopathic Parkinson’s disease using proton magnetic resonance spectroscopy. Ann Neurol 37:204–210PubMedCrossRefGoogle Scholar
  57. 57.
    Tedeschi G, Litvan I, Bonavita S et al (1997) Proton magnetic resonance spectroscopic imaging in progressive supranuclear palsy, Parkinson’s disease and corticobasal degeneration. Brain 120:1541–1552PubMedCrossRefGoogle Scholar
  58. 58.
    Cruz C, Aminoff M, Meyerhoff D et al (1997) Proton MR spectroscopic imaging of the striatum in Parkinson’s disease. Magn Reson Imaging 15:619–624PubMedCrossRefGoogle Scholar
  59. 59.
    Clarke CE, Lowry M, Horsman A (1997) Unchanged basal ganglia N-acetylaspartate and glutamate in idiopathic Parkinson’s disease measured by proton magnetic resonance spectroscopy. Mov Disord 12:297–301PubMedCrossRefGoogle Scholar
  60. 60.
    Clarke CE, Lowry M (2000) Basal ganglia metabolite concentrations in idiopathic Parkinson’s disease and multiple system atrophy measured by proton magnetic resonance spectroscopy. Eur J Neurol 7:661–665PubMedCrossRefGoogle Scholar
  61. 61.
    Choe BY, Park JW, Lee KS et al (1998) Neuronal laterality in Parkinson’s disease with unilateral symptom by in vivo 1H magnetic resonance spectroscopy. Invest Radiol 33:450–455PubMedCrossRefGoogle Scholar
  62. 62.
    Seraji-Bozorgzad N, Bao F, Shneyder N et al (2014) Quantitative MRI biomarker study in Parkinson’s disease: high-field 1H-MR spectroscopic and multi-modal MRI longitudinal study of the substantia nigra. Neurology 82(10 Supplement): P6.069Google Scholar
  63. 63.
    Gröger A, Bender B, Wurster I et al (2013) Differentiation between idiopathic and atypical parkinsonian syndromes using three-dimensional magnetic resonance spectroscopic imaging. J Neurol 84:644–649Google Scholar
  64. 64.
    Seraji-Bozorgzad N, Bao F, George E, et al. (2015) Longitudinal study of the substantia nigra in Parkinson disease: A high-field 1 H-MR spectroscopy imaging study. Mov Disord 30:1400–1404. doi:  10.1002/mds.26323 Google Scholar
  65. 65.
    Fearnley JM, Lees AJ (1991) Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114:2283–2301PubMedCrossRefGoogle Scholar
  66. 66.
    Schapira A, Gu M, Taanman J et al (1998) Mitochondria in the etiology and pathogenesis of Parkinson’s disease. Ann Neurol 44:S89–S98PubMedCrossRefGoogle Scholar
  67. 67.
    Gröger A, Kolb R, Schäfer R, Klose U (2014) Dopamine reduction in the substantia nigra of Parkinson’s disease patients confirmed by in vivo magnetic resonance spectroscopic imaging. PLoS One 9, e84081PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Gerlach M, Gsell W, Kornhuber J et al (1996) A post mortem study on neurochemical markers of dopaminergic, GABA-ergic and glutamatergic neurons in basal ganglia-thalamocortical circuits in Parkinson syndrome. Brain Res 741:142–152PubMedCrossRefGoogle Scholar
  69. 69.
    Öz G, Alger JRJ, Barker PBP et al (2014) Clinical proton MR spectroscopy in central nervous system disorders. Radiology 270:658–679. doi: 10.1148/radiol.13130531 PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30:672–679. doi: 10.1002/mrm.1910300604 PubMedCrossRefGoogle Scholar
  71. 71.
    Hu M, Taylor-Robinson S, Chaudhuri K et al (1999) Evidence for cortical dysfunction in clinically non-demented patients with Parkinson’s disease: a proton MR spectroscopy study. J Neurol Neurosurg Psychiatry 67:20–27PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Taylor-Robinson S, Turjanski N, Bhattacharya S et al (1999) A proton magnetic resonance spectroscopy study of the striatum and cerebral cortex in Parkinson’s disease. Metab Brain Dis 14:45–55PubMedCrossRefGoogle Scholar
  73. 73.
    Lucetti C, Del Dotto P, Gambaccini G et al (2001) Proton magnetic resonance spectroscopy (1H-MRS) of motor cortex and basal ganglia in de novo Parkinson’s disease patients. Neurol Sci 22:69–70PubMedCrossRefGoogle Scholar
  74. 74.
    Camicioli R, Hanstock C, Bouchard T et al (2007) Magnetic resonance spectroscopic evidence for presupplementary motor area neuronal dysfunction in Parkinson’s disease. Mov Disord 22:382–386PubMedCrossRefGoogle Scholar
  75. 75.
    Camicioli R, Korzan J, Foster S et al (2004) Posterior cingulate metabolic changes occur in Parkinson’s disease patients without dementia. Neurosci Lett 354:177–180PubMedCrossRefGoogle Scholar
  76. 76.
    Levin BE, Katzen HL, Maudsley A et al (2014) Whole-brain proton MR spectroscopic imaging in Parkinson’s disease. J Neuroimaging 24:39–44PubMedCrossRefGoogle Scholar
  77. 77.
    Bowen BC, Block RE, Sanchez-Ramos J et al (1995) Proton MR spectroscopy of the brain in 14 patients with Parkinson disease. Am J Neuroradiol 16:61–68PubMedGoogle Scholar
  78. 78.
    Tumati S, Martens S, Aleman A (2013) Magnetic resonance spectroscopy in mild cognitive impairment: Systematic review and meta-analysis. Neurosci Biobehav Rev 37:2571–2586. doi: 10.1016/j.neubiorev.2013.08.004 PubMedCrossRefGoogle Scholar
  79. 79.
    Hurd R, Sailasuta N, Srinivasan R et al (2004) Measurement of brain glutamate using TE-averaged PRESS at 3T. Magn Reson Med 51:435–440. doi: 10.1002/mrm.20007 PubMedCrossRefGoogle Scholar
  80. 80.
    Kickler N, Krack P, Fraix V et al (2007) Glutamate measurement in Parkinson’s disease using MRS at 3 T field strength. NMR Biomed 20:757–762PubMedCrossRefGoogle Scholar
  81. 81.
    Griffith H, Okonkwo O, O’Brien T, Hollander J (2008) Reduced brain glutamate in patients with Parkinson’s disease. NMR Biomed 21:381–387PubMedCrossRefGoogle Scholar
  82. 82.
    Dydak U, Jiang Y, Long L et al (2011) In vivo measurement of brain GABA concentrations by magnetic resonance spectroscopy in smelters occupationally exposed to manganese. Environ Health Perspect 119:219–224PubMedCrossRefGoogle Scholar
  83. 83.
    Long Z, Li X, Xu J et al (2014) Thalamic GABA predicts fine motor performance in manganese-exposed smelter workers. PLoS One 9, e88220PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Dharmadhikari S, Ma R, Yeh C-L, et al. (2015) MRS of basal-ganglia in Parkinson’s Disease reveals higher GABA levels. In: 23rd Annual Meet Exhibition International Society for Magnetic Resonance in Medicine Toronto, Canada, p 23:2209Google Scholar
  85. 85.
    Dydak U, Dharmadhikari S, Snyder S, Zauber SE (2015) Increased Thalamic GABA Levels Correlate with Parkinson Disease Severity. AD/PD Conference, Nice, France; March 18–21 2015Google Scholar
  86. 86.
    Hattingen E, Magerkurth J, Pilatus U et al (2009) Phosphorus and proton magnetic resonance spectroscopy demonstrates mitochondrial dysfunction in early and advanced Parkinson’s disease. Brain 132:3285–3297. doi: 10.1093/brain/awp293 PubMedCrossRefGoogle Scholar
  87. 87.
    Weiduschat N, Mao X, Beal MF et al (2014) Sex differences in cerebral energy metabolism in Parkinson’s disease: a phosphorus magnetic resonance spectroscopic imaging study. Parkinsonism Relat Disord 20:545–548. doi: 10.1016/j.parkreldis.2014.02.003 PubMedCrossRefGoogle Scholar
  88. 88.
    Griffith HR, den Hollander JA, Okonkwo OC et al (2008) Brain N-acetylaspartate is reduced in Parkinson disease with dementia. Alzheimer Dis Assoc Disord 22:54–60. doi: 10.1097/WAD.0b013e3181611011 PubMedCrossRefGoogle Scholar
  89. 89.
    Pagonabarraga J, Gómez-Ansón B, Rotger R et al (2012) Spectroscopic changes associated with mild cognitive impairment and dementia in Parkinson’s disease. Dement Geriatr Cogn Disord 34:312–318. doi: 10.1159/000345537 PubMedCrossRefGoogle Scholar
  90. 90.
    Abe K, Terakawa H, Takanashi M et al (2000) Proton magnetic resonance spectroscopy of patients with parkinsonism. Brain Res Bull 52:589–595PubMedCrossRefGoogle Scholar
  91. 91.
    Frederico F, Simone I, Lucivero V et al (1999) Usefulness of proton magnetic resonance spectroscopy in differentiating parkinsonian syndromes. Ital J Neurol Sci 20:223–229CrossRefGoogle Scholar
  92. 92.
    Guevara CA, Blain CR, Stahl D et al (2010) Quantitative magnetic resonance spectroscopic imaging in Parkinson’s disease, progressive supranuclear palsy and multiple system atrophy. Eur J Neurol 17:1193–1202PubMedCrossRefGoogle Scholar
  93. 93.
    Firbank M, Harrison R, O’Brien J (2002) A comprehensive review of proton magnetic resonance spectroscopy studies in dementia and Parkinson’s disease. Dement Geriatr Cogn Disord 14:64–76PubMedCrossRefGoogle Scholar
  94. 94.
    Watanabe H, Fukatsu H, Katsuno M et al (2004) Multiple regional 1H-MR spectroscopy in multiple system atrophy: NAA/Cr reduction in pontine base as a valuable diagnostic marker. J Neurol 75:103–109Google Scholar
  95. 95.
    Ellis CM, Lemmens G, Williams SC et al (1997) Changes in putamen N-acetylaspartate and choline ratios in untreated and levodopa-treated Parkinson’s disease: A proton magnetic resonance spectroscopy study. Neurology 49:438–444PubMedCrossRefGoogle Scholar
  96. 96.
    Lucetti C, Del Dotto P, Gambaccini G et al (2007) Influences of dopaminergic treatment on motor cortex in Parkinson disease: a MRI/MRS study. Mov Disord 22:2170–2175PubMedCrossRefGoogle Scholar
  97. 97.
    Mazuel L, Chassain C, Jean B et al (2016) Proton MR spectroscopy for diagnosis and evaluation of treatment efficacy in Parkinson disease. Radiology 278:505–513Google Scholar
  98. 98.
    Llumiguano C, Kovacs N, Usprung Z et al (2008) 1H-MRS experiences after bilateral DBS of the STN in Parkinson’s disease. Parkinsonism Relat Disord 14:229–232PubMedCrossRefGoogle Scholar
  99. 99.
    Cannon JR, Greenamyre JT (2010) Neurotoxic in vivo models of Parkinson’s disease. Recent advances. Prog Brain Res. 184:17–33. doi: 10.1016/S0079-6123(10)84002-6 PubMedCrossRefGoogle Scholar
  100. 100.
    Cannon JR, Greenamyre JT (2011) The role of environmental exposures in neurodegeneration and neurodegenerative diseases. Toxicol Sci 124:225–250. doi: 10.1093/toxsci/kfr239 PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Blesa J, Phani S, Jackson-Lewis V, Przedborski S (2012) Classic and new animal models of Parkinson’s disease. J Biomed Biotechnol. 2012:845618. doi: 10.1155/2012/845618 Google Scholar
  102. 102.
    Deumens R, Blokland A, Prickaerts J (2002) Modeling Parkinson’s disease in rats: an evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp Neurol 175:303–317. doi: 10.1006/exnr.2002.7891 PubMedCrossRefGoogle Scholar
  103. 103.
    Blum D, Torch S, Lambeng N (2001) Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson’s disease. Prog Neurobiol 65:135–172PubMedCrossRefGoogle Scholar
  104. 104.
    Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909. doi: 10.1016/S0896-6273(03)00568-3 PubMedCrossRefGoogle Scholar
  105. 105.
    Kickler N, Lacombe E, Chassain C et al (2009) Assessment of metabolic changes in the striatum of a rat model of parkinsonism: an in vivo 1H MRS study. NMR Biomed 22:207–212. doi: 10.1002/nbm.1305 PubMedCrossRefGoogle Scholar
  106. 106.
    Hou Z, Lei H, Hong S et al (2010) Functional changes in the frontal cortex in Parkinson’s disease using a rat model. J Clin Neurosci 17:628–633. doi: 10.1016/j.jocn.2009.07.101 PubMedCrossRefGoogle Scholar
  107. 107.
    Kim SY, Choe BY, Lee HS et al (2011) Forelimb akinesia and metabolic alteration in the striatum following unilateral 6-hydroxydopamine lesion in rats: An in vivo proton magnetic resonance spectroscopy study. Neurochem J 5:270–277. doi: 10.1134/S1819712411040088 CrossRefGoogle Scholar
  108. 108.
    Brownell AL, Jenkins BG, Elmaleh DR et al (1998) Combined PET/MRS brain studies show dynamic and long-term physiological changes in a primate model of Parkinson disease. Nat Med 4:1308–1312. doi: 10.1038/3300 PubMedCrossRefGoogle Scholar
  109. 109.
    Gao HC, Zhu H, Song CY et al (2013) Metabolic changes detected by ex vivo high resolution 1H NMR spectroscopy in the striatum of 6-OHDA-induced Parkinson’s rat. Mol Neurobiol 47:123–130. doi: 10.1007/s12035-012-8336-z PubMedCrossRefGoogle Scholar
  110. 110.
    Coune PG, Craveiro M, Gaugler MN et al (2013) An in vivo ultrahigh field 14.1T 1H-MRS study on 6-OHDA and α-synuclein-based rat models of Parkinson’s disease: GABA as an early disease marker. NMR Biomed 26:43–50. doi: 10.1002/nbm.2817 PubMedCrossRefGoogle Scholar
  111. 111.
    Podell M, Hadjiconstantinou M, Smith MA, Neff NH (2003) Proton magnetic resonance imaging and spectroscopy identify metabolic changes in the striatum in the MPTP feline model of parkinsonism. Exp Neurol 179:159–166. doi: 10.1016/S0014-4886(02)00015-8 PubMedCrossRefGoogle Scholar
  112. 112.
    Koga K, Mori A, Ohashi S et al (2006) 1H MRS identifies lactate rise in the striatum of MPTP-treated C57BL/6 mice. Eur J Neurosci 23:1077–1081. doi: 10.1111/j.1460-9568.2006.04610.x PubMedCrossRefGoogle Scholar
  113. 113.
    van Vlieta SAM, Blezer ELA, Jongsma MJ et al (2008) Exploring the neuroprotective effects of modafinil in a marmoset Parkinson model with immunohistochemistry, magnetic resonance imaging and spectroscopy. Brain Res 1189:219–228. doi: 10.1016/j.brainres.2007.10.059 PubMedCrossRefGoogle Scholar
  114. 114.
    Chassain C, Bielicki G, Carcenac C et al (2013) Does MPTP intoxication in mice induce metabolite changes in the nucleus accumbens? A 1H nuclear MRS study. NMR Biomed 26:336–347. doi: 10.1002/nbm.2853 PubMedCrossRefGoogle Scholar
  115. 115.
    Chassain C, Bielicki G, Keller C et al (2010) Metabolic changes detected in vivo by 1H MRS in the MPTP-intoxicated mouse. NMR Biomed 23:547–553. doi: 10.1002/nbm.1504 PubMedCrossRefGoogle Scholar
  116. 116.
    Wu B, Song B, Tian S et al (2012) Central nervous system damage due to acute paraquat poisoning: A neuroimaging study with 3.0T MRI. Neurotoxicology 33:1330–1337. doi: 10.1016/j.neuro.2012.08.007 PubMedCrossRefGoogle Scholar
  117. 117.
    Cannon JR, Tapias VM, Na HM et al (2009) A highly reproducible rotenone model of Parkinson’s disease. Neurobiol Dis 34:279–290. doi: 10.1016/j.nbd.2009.01.016 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of Health SciencesPurdue UniversityWest LafayetteUSA
  2. 2.Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisUSA
  3. 3.Department of NeurologyIndiana University School of MedicineIndianapolisUSA

Personalised recommendations