Magnetic Resonance Spectroscopy in Dementia

Part of the Contemporary Clinical Neuroscience book series (CCNE)


Neuroimaging biomarkers are increasingly being used in clinical practice for early diagnosis and differential diagnosis of dementia and in clinical trials as an outcome measure. Proton magnetic resonance spectroscopy has shown promise in dementia as a diagnostic biomarker with the ability to detect preclinical disease and amnestic mild cognitive impairment and provide ancillary information to distinguish among dementia subtypes. Alzheimer’s disease is characterized by decreased N-acetylaspartate-to-creatine (NAA/Cr) and elevated myo-inositol-to-creatine (mI/Cr) levels. Dementia with Lewy bodies is characterized by normal NAA/Cr levels in the posterior cingulate and elevated choline-to-creatine (Cho/Cr). Vascular dementia demonstrates decreased NAA/Cr but preserved Cho/Cr and mI/Cr in the posterior cingulate. Despite promising studies, MRS is not routinely used in the evaluation for dementia in clinical practice. Improving knowledge of the pathological basis of the metabolite ratio abnormalities, longitudinal studies, and better standardization of the MRS technique may improve the application in dementia.


Magnetic resonance spectroscopy Mild cognitive impairment Alzheimer’s disease Dementia with Lewy bodies Vascular dementia Frontotemporal lobar degeneration Posterior cingulate 


  1. 1.
    Farlow M, Arnold SE, van Dyck CH, Aisen PS, Snider BJ, Porsteinsson AP, Friedrich S, Dean RA, Gonzales C, Sethuraman G, DeMattos RB, Mohs R, Paul SM, Siemers ER (2012) Safety and biomarker effects of solanezumab in patients with Alzheimer’s disease. Alzheimers Dement 8(4):261–271. doi: 10.1016/j.jalz.2011.09.224 PubMedCrossRefGoogle Scholar
  2. 2.
    Gold M, Lorenzl S, Stewart AJ, Morimoto BH, Williams DR, Gozes I (2012) Critical appraisal of the role of davunetide in the treatment of progressive supranuclear palsy. Neuropsychiatr Dis Treat 8:85–93. doi: 10.2147/NDT.S12518 PubMedPubMedCentralGoogle Scholar
  3. 3.
    Salloway S, Sperling R, Fox NC, Blennow K, Klunk W, Raskind M, Sabbagh M, Honig LS, Porsteinsson AP, Ferris S, Reichert M, Ketter N, Nejadnik B, Guenzler V, Miloslavsky M, Wang D, Lu Y, Lull J, Tudor IC, Liu E, Grundman M, Yuen E, Black R, Brashear HR (2014) Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med 370(4):322–333. doi: 10.1056/NEJMoa1304839 PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Harris JM, Gall C, Thompson JC, Richardson AM, Neary D, du Plessis D, Pal P, Mann DM, Snowden JS, Jones M (2013) Sensitivity and specificity of FTDC criteria for behavioral variant frontotemporal dementia. Neurology 80(20):1881–1887. doi: 10.1212/WNL.0b013e318292a342 PubMedCrossRefGoogle Scholar
  5. 5.
    Nelson PT, Jicha GA, Kryscio RJ, Abner EL, Schmitt FA, Cooper G, Xu LO, Smith CD, Markesbery WR (2010) Low sensitivity in clinical diagnoses of dementia with Lewy bodies. J Neurol 257(3):359–366. doi: 10.1007/s00415-009-5324-y PubMedCrossRefGoogle Scholar
  6. 6.
    Barkhof F, Polvikoski TM, van Straaten EC, Kalaria RN, Sulkava R, Aronen HJ, Niinisto L, Rastas S, Oinas M, Scheltens P, Erkinjuntti T (2007) The significance of medial temporal lobe atrophy: a postmortem MRI study in the very old. Neurology 69(15):1521–1527PubMedCrossRefGoogle Scholar
  7. 7.
    Bobinski M, Wegiel J, Tarnawski M, Reisberg B, de Leon MJ, Miller DC, Wisniewski HM (1997) Relationships between regional neuronal loss and neurofibrillary changes in the hippocampal formation and duration and severity of Alzheimer disease. J Neuropathol Exp Neurol 56(4):414–420PubMedCrossRefGoogle Scholar
  8. 8.
    Gosche KM, Mortimer JA, Smith CD, Markesbery WR, Snowdon DA (2002) Hippocampal volume as an index of Alzheimer neuropathology: findings from the Nun Study. Neurology 58(10):1476–1482PubMedCrossRefGoogle Scholar
  9. 9.
    Jack CR Jr, Dickson DW, Parisi JE, Xu YC, Cha RH, O’Brien PC, Edland SD, Smith GE, Boeve BF, Tangalos EG, Kokmen E, Petersen RC (2002) Antemortem MRI findings correlate with hippocampal neuropathology in typical aging and dementia. Neurology 58(5):750–757PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Jagust WJ, Zheng L, Harvey DJ, Mack WJ, Vinters HV, Weiner MW, Ellis WG, Zarow C, Mungas D, Reed BR, Kramer JH, Schuff N, DeCarli C, Chui HC (2008) Neuropathological basis of magnetic resonance images in aging and dementia. Ann Neurol 63(1):72–80PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Whitwell JL, Shiung MM, Przybelski SA, Weigand SD, Knopman DS, Boeve BF, Petersen RC, Jack CR Jr (2008) MRI patterns of atrophy associated with progression to AD in amnestic mild cognitive impairment. Neurology 70(7):512–520. doi: 10.1212/01.wnl.0000280575.77437.a2 PubMedCrossRefGoogle Scholar
  12. 12.
    Whitwell JL, Weigand SD, Shiung MM, Boeve BF, Ferman TJ, Smith GE, Knopman DS, Petersen RC, Benarroch EE, Josephs KA, Jack CR Jr (2007) Focal atrophy in dementia with Lewy bodies on MRI: a distinct pattern from Alzheimer’s disease. Brain 130(Pt 3):708–719PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Kantarci K, Ferman TJ, Boeve BF, Weigand SD, Przybelski S, Vemuri P, Murray MM, Senjem ML, Smith GE, Knopman DS, Petersen RC, Jack CR Jr, Parisi JE, Dickson DW (2012) Focal atrophy on MRI and neuropathologic classification of dementia with Lewy bodies. Neurology 79(6):553–560. doi: 10.1212/WNL.0b013e31826357a5, WNL.0b013e31826357a5 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Schneider JA, Arvanitakis Z, Bang W, Bennett DA (2007) Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology 69(24):2197–2204PubMedCrossRefGoogle Scholar
  15. 15.
    Foster NL, Heidebrink JL, Clark CM, Jagust WJ, Arnold SE, Barbas NR, DeCarli CS, Turner RS, Koeppe RA, Higdon R, Minoshima S (2007) FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer’s disease. Brain 130(Pt 10):2616–2635. doi: 10.1093/brain/awm177 PubMedCrossRefGoogle Scholar
  16. 16.
    Taylor KI, Probst A, Miserez AR, Monsch AU, Tolnay M (2008) Clinical course of neuropathologically confirmed frontal-variant Alzheimer’s disease. Nat Clin Pract Neurol 4(4):226–232. doi: 10.1038/ncpneuro0746 PubMedGoogle Scholar
  17. 17.
    Minoshima S, Foster NL, Sima AA, Frey KA, Albin RL, Kuhl DE (2001) Alzheimer’s disease versus dementia with Lewy bodies: cerebral metabolic distinction with autopsy confirmation. Ann Neurol 50(3):358–365PubMedCrossRefGoogle Scholar
  18. 18.
    Albin RL, Minoshima S, D’Amato CJ, Frey KA, Kuhl DA, Sima AA (1996) Fluoro-deoxyglucose positron emission tomography in diffuse Lewy body disease. Neurology 47(2):462–466PubMedCrossRefGoogle Scholar
  19. 19.
    Tang-Wai DF, Graff-Radford NR, Boeve BF, Dickson DW, Parisi JE, Crook R, Caselli RJ, Knopman DS, Petersen RC (2004) Clinical, genetic, and neuropathologic characteristics of posterior cortical atrophy. Neurology 63(7):1168–1174PubMedCrossRefGoogle Scholar
  20. 20.
    Ishii K, Sasaki M, Kitagaki H, Yamaji S, Sakamoto S, Matsuda K, Mori E (1997) Reduction of cerebellar glucose metabolism in advanced Alzheimer’s disease. J Nucl Med 38(6):925–928PubMedGoogle Scholar
  21. 21.
    Thal DR, Rub U, Orantes M, Braak H (2002) Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology 58(12):1791–1800PubMedCrossRefGoogle Scholar
  22. 22.
    Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259PubMedCrossRefGoogle Scholar
  23. 23.
    Jack CR Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, Petersen RC, Trojanowski JQ (2010) Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol 9(1):119–128. doi: 10.1016/S1474-4422(09)70299-6 PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Arvanitakis Z, Leurgans SE, Barnes LL, Bennett DA, Schneider JA (2011) Microinfarct pathology, dementia, and cognitive systems. Stroke 42(3):722–727. doi: 10.1161/STROKEAHA.110.595082 PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Josephs KA, Hodges JR, Snowden JS, Mackenzie IR, Neumann M, Mann DM, Dickson DW (2011) Neuropathological background of phenotypical variability in frontotemporal dementia. Acta Neuropathol 122(2):137–153. doi: 10.1007/s00401-011-0839-6 PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, Marcus DS, Cairns NJ, Xie X, Blazey TM, Holtzman DM, Santacruz A, Buckles V, Oliver A, Moulder K, Aisen PS, Ghetti B, Klunk WE, McDade E, Martins RN, Masters CL, Mayeux R, Ringman JM, Rossor MN, Schofield PR, Sperling RA, Salloway S, Morris JC (2012) Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 367(9):795–804. doi: 10.1056/NEJMoa1202753 PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Callaway E (2012) Alzheimer’s drugs take a new tack. Nature 489(7414):13–14PubMedCrossRefGoogle Scholar
  28. 28.
    Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, Iwatsubo T, Jack CR Jr, Kaye J, Montine TJ, Park DC, Reiman EM, Rowe CC, Siemers E, Stern Y, Yaffe K, Carrillo MC, Thies B, Morrison-Bogorad M, Wagster MV, Phelps CH (2011) Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):280–292. doi: 10.1016/j.jalz.2011.03.003 PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, Gamst A, Holtzman DM, Jagust WJ, Petersen RC, Snyder PJ, Carrillo MC, Thies B, Phelps CH (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):270–279. doi: 10.1016/j.jalz.2011.03.008 PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    den Heijer T, Sijens PE, Prins ND, Hofman A, Koudstaal PJ, Oudkerk M, Breteler MM (2006) MR spectroscopy of brain white matter in the prediction of dementia. Neurology 66(4):540–544CrossRefGoogle Scholar
  31. 31.
    Godbolt AK, Waldman AD, MacManus DG, Schott JM, Frost C, Cipolotti L, Fox NC, Rossor MN (2006) MRS shows abnormalities before symptoms in familial Alzheimer disease. Neurology 66(5):718–722PubMedCrossRefGoogle Scholar
  32. 32.
    Petersen RC, Roberts RO, Knopman DS, Boeve BF, Geda YE, Ivnik RJ, Smith GE, Jack CR Jr (2009) Mild cognitive impairment: ten years later. Arch Neurol 66(12):1447–1455. doi: 10.1001/archneurol.2009.266 PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Petersen RC, Caracciolo B, Brayne C, Gauthier S, Jelic V, Fratiglioni L (2014) Mild cognitive impairment: a concept in evolution. J Intern Med 275(3):214–228. doi: 10.1111/joim.12190 PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Kantarci K, Weigand SD, Przybelski SA, Shiung MM, Whitwell JL, Negash S, Knopman DS, Boeve BF, O’Brien PC, Petersen RC, Jack CR Jr (2009) Risk of dementia in MCI: combined effect of cerebrovascular disease, volumetric MRI, and 1H MRS. Neurology 72(17):1519–1525PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Kantarci K, Petersen RC, Przybelski SA, Weigand SD, Shiung MM, Whitwell JL, Negash S, Ivnik RJ, Boeve BF, Knopman DS, Smith GE, Jack CR Jr (2008) Hippocampal volumes, proton magnetic resonance spectroscopy metabolites, and cerebrovascular disease in mild cognitive impairment subtypes. Arch Neurol 65(12):1621–1628PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Chantal S, Braun CM, Bouchard RW, Labelle M, Boulanger Y (2004) Similar 1H magnetic resonance spectroscopic metabolic pattern in the medial temporal lobes of patients with mild cognitive impairment and Alzheimer disease. Brain Res 1003(1–2):26–35PubMedCrossRefGoogle Scholar
  37. 37.
    Chao LL, Schuff N, Kramer JH, Du AT, Capizzano AA, O’Neill J, Wolkowitz OM, Jagust WJ, Chui HC, Miller BL, Yaffe K, Weiner MW (2005) Reduced medial temporal lobe N-acetylaspartate in cognitively impaired but nondemented patients. Neurology 64(2):282–289PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Kantarci K, Jack CR Jr, Xu YC, Campeau NG, O’Brien PC, Smith GE, Ivnik RJ, Boeve BF, Kokmen E, Tangalos EG, Petersen RC (2000) Regional metabolic patterns in mild cognitive impairment and Alzheimer’s disease: a 1H MRS study. Neurology 55(2):210–217PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Metastasio A, Rinaldi P, Tarducci R, Mariani E, Feliziani FT, Cherubini A, Pelliccioli GP, Gobbi G, Senin U, Mecocci P (2006) Conversion of MCI to dementia: role of proton magnetic resonance spectroscopy. Neurobiol Aging 27(7):926–932. doi: 10.1016/j.neurobiolaging.2005.05.002 PubMedCrossRefGoogle Scholar
  40. 40.
    Kantarci K, Weigand SD, Petersen RC, Boeve BF, Knopman DS, Gunter J, Reyes D, Shiung M, O’Brien PC, Smith GE, Ivnik RJ, Tangalos EG, Jack CR Jr (2007) Longitudinal 1H MRS changes in mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging 28(9):1330–1339PubMedCrossRefGoogle Scholar
  41. 41.
    Kantarci K, Weigand SD, Przybelski SA, Preboske GM, Pankratz VS, Vemuri P, Senjem ML, Murphy MC, Gunter JL, Machulda MM, Ivnik RJ, Roberts RO, Boeve BF, Rocca WA, Knopman DS, Petersen RC, Jack CR Jr (2013) MRI and MRS predictors of mild cognitive impairment in a population-based sample. Neurology 81(2):126–133. doi: 10.1212/WNL.0b013e31829a3329 PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Murray ME, Graff-Radford NR, Ross OA, Petersen RC, Duara R, Dickson DW (2011) Neuropathologically defined subtypes of Alzheimer’s disease with distinct clinical characteristics: a retrospective study. Lancet Neurol 10(9):785–796. doi: 10.1016/S1474-4422(11)70156-9 PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Rami L, Gomez-Anson B, Sanchez-Valle R, Bosch B, Monte GC, Llado A, Molinuevo JL (2007) Longitudinal study of amnesic patients at high risk for Alzheimer’s disease: clinical, neuropsychological and magnetic resonance spectroscopy features. Dement Geriatr Cogn Disord 24(5):402–410. doi: 10.1159/000109750 PubMedCrossRefGoogle Scholar
  44. 44.
    Fayed N, Davila J, Oliveros A, Castillo J, Medrano JJ (2008) Utility of different MR modalities in mild cognitive impairment and its use as a predictor of conversion to probable dementia. Acad Radiol 15(9):1089–1098. doi: 10.1016/j.acra.2008.04.008 PubMedCrossRefGoogle Scholar
  45. 45.
    Burhan AM, Bartha R, Bocti C, Borrie M, Laforce R, Rosa-Neto P, Soucy JP (2013) Role of emerging neuroimaging modalities in patients with cognitive impairment: a review from the Canadian Consensus Conference on the Diagnosis and Treatment of Dementia 2012. Alzheimers Res Ther 5(Suppl 1):S4. doi: 10.1186/alzrt200 PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Klunk WE, Panchalingam K, Moossy J, McClure RJ, Pettegrew JW (1992) N-Acetyl-L-aspartate and other amino acid metabolites in Alzheimer’s disease brain: a preliminary proton nuclear magnetic resonance study. Neurology 42(8):1578–1585PubMedCrossRefGoogle Scholar
  47. 47.
    Huang W, Alexander GE, Chang L, Shetty HU, Krasuski JS, Rapoport SI, Schapiro MB (2001) Brain metabolite concentration and dementia severity in Alzheimer’s disease: a (1)H MRS study. Neurology 57(4):626–632PubMedCrossRefGoogle Scholar
  48. 48.
    Miller BL, Moats RA, Shonk T, Ernst T, Woolley S, Ross BD (1993) Alzheimer disease: depiction of increased cerebral myo-inositol with proton MR spectroscopy. Radiology 187(2):433–437PubMedCrossRefGoogle Scholar
  49. 49.
    Pfefferbaum A, Adalsteinsson E, Spielman D, Sullivan EV, Lim KO (1999) In vivo spectroscopic quantification of the N-acetyl moiety, creatine, and choline from large volumes of brain gray and white matter: effects of normal aging. Magn Reson Med 41(2):276–284PubMedCrossRefGoogle Scholar
  50. 50.
    Schuff N, Capizzano AA, Du AT, Amend DL, O’Neill J, Norman D, Kramer J, Jagust W, Miller B, Wolkowitz OM, Yaffe K, Weiner MW (2002) Selective reduction of N-acetylaspartate in medial temporal and parietal lobes in AD. Neurology 58(6):928–935PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Cheng LL, Newell K, Mallory AE, Hyman BT, Gonzalez RG (2002) Quantification of neurons in Alzheimer and control brains with ex vivo high resolution magic angle spinning proton magnetic resonance spectroscopy and stereology. Magn Reson Imaging 20(7):527–533PubMedCrossRefGoogle Scholar
  52. 52.
    Jessen F, Block W, Traber F, Keller E, Flacke S, Papassotiropoulos A, Lamerichs R, Heun R, Schild HH (2000) Proton MR spectroscopy detects a relative decrease of N-acetylaspartate in the medial temporal lobe of patients with AD. Neurology 55(5):684–688PubMedCrossRefGoogle Scholar
  53. 53.
    Schuff N, Amend DL, Meyerhoff DJ, Tanabe JL, Norman D, Fein G, Weiner MW (1998) Alzheimer disease: quantitative H-1 MR spectroscopic imaging of frontoparietal brain. Radiology 207(1):91–102PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Tedeschi G, Bertolino A, Lundbom N, Bonavita S, Patronas NJ, Duyn JH, Metman LV, Chase TN, Di Chiro G (1996) Cortical and subcortical chemical pathology in Alzheimer’s disease as assessed by multislice proton magnetic resonance spectroscopic imaging. Neurology 47(3):696–704PubMedCrossRefGoogle Scholar
  55. 55.
    Zhu X, Schuff N, Kornak J, Soher B, Yaffe K, Kramer JH, Ezekiel F, Miller BL, Jagust WJ, Weiner MW (2006) Effects of Alzheimer disease on fronto-parietal brain N-acetyl aspartate and myo-inositol using magnetic resonance spectroscopic imaging. Alzheimer Dis Assoc Disord 20(2):77–85PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Barker PB, Lee RR, McArthur JC (1995) AIDS dementia complex: evaluation with proton MR spectroscopic imaging. Radiology 195(1):58–64PubMedCrossRefGoogle Scholar
  57. 57.
    Kantarci K, Petersen RC, Boeve BF, Knopman DS, Tang-Wai DF, O’Brien PC, Weigand SD, Edland SD, Smith GE, Ivnik RJ, Ferman TJ, Tangalos EG, Jack CR Jr (2004) 1H MR spectroscopy in common dementias. Neurology 63(8):1393–1398PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Shiino A, Matsuda M, Morikawa S, Inubushi T, Akiguchi I, Handa J (1993) Proton magnetic resonance spectroscopy with dementia. Surg Neurol 39(2):143–147PubMedCrossRefGoogle Scholar
  59. 59.
    Modrego PJ, Pina MA, Fayed N, Diaz M (2006) Changes in metabolite ratios after treatment with rivastigmine in Alzheimer’s disease: a nonrandomised controlled trial with magnetic resonance spectroscopy. CNS Drugs 20(10):867–877PubMedCrossRefGoogle Scholar
  60. 60.
    Modrego PJ, Fayed N, Errea JM, Rios C, Pina MA, Sarasa M (2010) Memantine versus donepezil in mild to moderate Alzheimer’s disease: a randomized trial with magnetic resonance spectroscopy. Eur J Neurol 17(3):405–412. doi: 10.1111/j.1468-1331.2009.02816.x PubMedCrossRefGoogle Scholar
  61. 61.
    Bitsch A, Bruhn H, Vougioukas V, Stringaris A, Lassmann H, Frahm J, Bruck W (1999) Inflammatory CNS demyelination: histopathologic correlation with in vivo quantitative proton MR spectroscopy. Am J Neuroradiol 20(9):1619–1627PubMedGoogle Scholar
  62. 62.
    Glanville NT, Byers DM, Cook HW, Spence MW, Palmer FB (1989) Differences in the metabolism of inositol and phosphoinositides by cultured cells of neuronal and glial origin. Biochim Biophys Acta 1004(2):169–179PubMedCrossRefGoogle Scholar
  63. 63.
    Jones RS, Waldman AD (2004) 1H-MRS evaluation of metabolism in Alzheimer’s disease and vascular dementia. Neurol Res 26(5):488–495PubMedCrossRefGoogle Scholar
  64. 64.
    Meyerhoff DJ, MacKay S, Constans JM, Norman D, Van Dyke C, Fein G, Weiner MW (1994) Axonal injury and membrane alterations in Alzheimer’s disease suggested by in vivo proton magnetic resonance spectroscopic imaging. Ann Neurol 36(1):40–47PubMedCrossRefGoogle Scholar
  65. 65.
    Krishnan KR, Charles HC, Doraiswamy PM, Mintzer J, Weisler R, Yu X, Perdomo C, Ieni JR, Rogers S (2003) Randomized, placebo-controlled trial of the effects of donepezil on neuronal markers and hippocampal volumes in Alzheimer’s disease. Am J Psychiatry 160(11):2003–2011PubMedCrossRefGoogle Scholar
  66. 66.
    Moats RA, Ernst T, Shonk TK, Ross BD (1994) Abnormal cerebral metabolite concentrations in patients with probable Alzheimer disease. Magn Reson Med 32(1):110–115PubMedCrossRefGoogle Scholar
  67. 67.
    Rose SE, de Zubicaray GI, Wang D, Galloway GJ, Chalk JB, Eagle SC, Semple J, Doddrell DM (1999) A 1H MRS study of probable Alzheimer’s disease and normal aging: implications for longitudinal monitoring of dementia progression. Magn Reson Imaging 17(2):291–299PubMedCrossRefGoogle Scholar
  68. 68.
    Schuff N, Amend D, Ezekiel F, Steinman SK, Tanabe J, Norman D, Jagust W, Kramer JH, Mastrianni JA, Fein G, Weiner MW (1997) Changes of hippocampal N-acetyl aspartate and volume in Alzheimer’s disease. A proton MR spectroscopic imaging and MRI study. Neurology 49(6):1513–1521PubMedCrossRefGoogle Scholar
  69. 69.
    Klein J (2000) Membrane breakdown in acute and chronic neurodegeneration: focus on choline-containing phospholipids. J Neural Transm 107(8–9):1027–1063PubMedCrossRefGoogle Scholar
  70. 70.
    Satlin A, Bodick N, Offen WW, Renshaw PF (1997) Brain proton magnetic resonance spectroscopy (1H-MRS) in Alzheimer’s disease: changes after treatment with xanomeline, an M1 selective cholinergic agonist. Am J Psychiatry 154(10):1459–1461PubMedCrossRefGoogle Scholar
  71. 71.
    Wurtman RJ, Blusztajn JK, Marie JC (1985) Autocannibalism of choline-containing membrane phospholipids in the pathogenesis of Alzheimer’s disease. Neurochem Int 7:369–372PubMedCrossRefGoogle Scholar
  72. 72.
    Antuono PG, Jones JL, Wang Y, Li SJ (2001) Decreased glutamate + glutamine in Alzheimer’s disease detected in vivo with (1)H-MRS at 0.5 T. Neurology 56(6):737–742PubMedCrossRefGoogle Scholar
  73. 73.
    Bartha R, Smith M, Rupsingh R, Rylett J, Wells JL, Borrie MJ (2008) High field (1)H MRS of the hippocampus after donepezil treatment in Alzheimer disease. Prog Neuropsychopharmacol Biol Psychiatry 32(3):786–793PubMedCrossRefGoogle Scholar
  74. 74.
    Hattori N, Abe K, Sakoda S, Sawada T (2002) Proton MR spectroscopic study at 3 Tesla on glutamate/glutamine in Alzheimer’s disease. Neuroreport 13(1):183–186PubMedCrossRefGoogle Scholar
  75. 75.
    Rupsingh R, Borrie M, Smith M, Wells JL, Bartha R (2011) Reduced hippocampal glutamate in Alzheimer disease. Neurobiol Aging 32(5):802–810. doi: 10.1016/j.neurobiolaging.2009.05.002 PubMedCrossRefGoogle Scholar
  76. 76.
    Penner J, Rupsingh R, Smith M, Wells JL, Borrie MJ, Bartha R (2010) Increased glutamate in the hippocampus after galantamine treatment for Alzheimer disease. Prog Neuropsychopharmacol Biol Psychiatry 34(1):104–110. doi: 10.1016/j.pnpbp.2009.10.007 PubMedCrossRefGoogle Scholar
  77. 77.
    von Kienlin M, Kunnecke B, Metzger F, Steiner G, Richards JG, Ozmen L, Jacobsen H, Loetscher H (2005) Altered metabolic profile in the frontal cortex of PS2APP transgenic mice, monitored throughout their life span. Neurobiol Dis 18(1):32–39. doi: 10.1016/j.nbd.2004.09.005 CrossRefGoogle Scholar
  78. 78.
    Schott JM, Frost C, MacManus DG, Ibrahim F, Waldman AD, Fox NC (2010) Short echo time proton magnetic resonance spectroscopy in Alzheimer’s disease: a longitudinal multiple time point study. Brain 133(11):3315–3322. doi: 10.1093/brain/awq208 PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Jessen F, Block W, Traber F, Keller E, Flacke S, Lamerichs R, Schild HH, Heun R (2001) Decrease of N-acetylaspartate in the MTL correlates with cognitive decline of AD patients. Neurology 57(5):930–932PubMedCrossRefGoogle Scholar
  80. 80.
    Kantarci K, Smith GE, Ivnik RJ, Petersen RC, Boeve BF, Knopman DS, Tangalos EG, Jack CR Jr (2002) 1H magnetic resonance spectroscopy, cognitive function, and apolipoprotein E genotype in normal aging, mild cognitive impairment and Alzheimer’s disease. J Int Neuropsychol Soc 8(7):934–942PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Kantarci K, Knopman DS, Dickson DW, Parisi JE, Whitwell JL, Weigand SD, Josephs KA, Boeve BF, Petersen RC, Jack CR Jr (2008) Alzheimer disease: postmortem neuropathologic correlates of antemortem 1H MR spectroscopy metabolite measurements. Radiology 248(1):210–220PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Chen SQ, Wang PJ, Ten GJ, Zhan W, Li MH, Zang FC (2009) Role of myo-inositol by magnetic resonance spectroscopy in early diagnosis of Alzheimer’s disease in APP/PS1 transgenic mice. Dement Geriatr Cogn Disord 28(6):558–566PubMedCrossRefGoogle Scholar
  83. 83.
    Dedeoglu A, Choi JK, Cormier K, Kowall NW, Jenkins BG (2004) Magnetic resonance spectroscopic analysis of Alzheimer’s disease mouse brain that express mutant human APP shows altered neurochemical profile. Brain Res 1012(1-2):60–65. doi: 10.1016/j.brainres.2004.02.079 PubMedCrossRefGoogle Scholar
  84. 84.
    Marjanska M, Curran GL, Wengenack TM, Henry PG, Bliss RL, Poduslo JF, Jack CR Jr, Ugurbil K, Garwood M (2005) Monitoring disease progression in transgenic mouse models of Alzheimer’s disease with proton magnetic resonance spectroscopy. Proc Natl Acad Sci U S A 102(33):11906–11910PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Oberg J, Spenger C, Wang FH, Andersson A, Westman E, Skoglund P, Sunnemark D, Norinder U, Klason T, Wahlund LO, Lindberg M (2008) Age related changes in brain metabolites observed by 1H MRS in APP/PS1 mice. Neurobiol Aging 29(9):1423–1433PubMedCrossRefGoogle Scholar
  86. 86.
    van Duijn S, Nabuurs RJ, van Duinen SG, Natte R, van Buchem MA, Alia A (2013) Longitudinal monitoring of sex-related in vivo metabolic changes in the brain of Alzheimer’s disease transgenic mouse using magnetic resonance spectroscopy. J Alzheimers Dis 34(4):1051–1059. doi: 10.3233/JAD-122188 PubMedGoogle Scholar
  87. 87.
    Sailasuta N, Harris K, Tran T, Ross B (2011) Minimally invasive biomarker confirms glial activation present in Alzheimer’s disease: a preliminary study. Neuropsychiatr Dis Treat 7:495–499PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Marjanska M, Weigand SD, Preboske G, Wengenack TM, Chamberlain R, Curran GL, Poduslo JF, Garwood M, Kobayashi D, Lin JC, Jack CR Jr (2014) Treatment effects in a transgenic mouse model of Alzheimer’s disease: a magnetic resonance spectroscopy study after passive immunization. Neuroscience 259:94–100. doi: 10.1016/j.neuroscience.2013.11.052 PubMedCrossRefGoogle Scholar
  89. 89.
    Fujishiro H, Ferman TJ, Boeve BF, Smith GE, Graff-Radford NR, Uitti RJ, Wszolek ZK, Knopman DS, Petersen RC, Parisi JE, Dickson DW (2008) Validation of the neuropathologic criteria of the third consortium for dementia with Lewy bodies for prospectively diagnosed cases. J Neuropathol Exp Neurol 67(7):649–656. doi: 10.1097/NEN.0b013e31817d7a1d PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Kattapong VJ, Brooks WM, Wesley MH, Kodituwakku PW, Rosenberg GA (1996) Proton magnetic resonance spectroscopy of vascular- and Alzheimer-type dementia. Arch Neurol 53(7):678–680PubMedCrossRefGoogle Scholar
  91. 91.
    Molina JA, Garcia-Segura JM, Benito-Leon J, Gomez-Escalonilla C, del Ser T, Martinez V, Viano J (2002) Proton magnetic resonance spectroscopy in dementia with Lewy bodies. Eur Neurol 48(3):158–163PubMedCrossRefGoogle Scholar
  92. 92.
    Xuan X, Ding M, Gong X (2008) Proton magnetic resonance spectroscopy detects a relative decrease of N-acetylaspartate in the hippocampus of patients with dementia with Lewy bodies. J Neuroimaging 18(2):137–141. doi: 10.1111/j.1552-6569.2007.00203.x PubMedCrossRefGoogle Scholar
  93. 93.
    Graff-Radford J, Boeve BF, Murray ME, Ferman TJ, Tosakulwong N, Lesnick TG, Maroney-Smith M, Senjem ML, Gunter J, Smith GE, Knopman DS, Jack CR Jr, Dickson DW, Petersen RC, Kantarci K (2014) Regional proton magnetic resonance spectroscopy patterns in dementia with Lewy bodies. Neurobiol Aging 35(6):1483–1490. doi: 10.1016/j.neurobiolaging.2014.01.001 PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Gomez-Isla T, Growdon WB, McNamara M, Newell K, Gomez-Tortosa E, Hedley-Whyte ET, Hyman BT (1999) Clinicopathologic correlates in temporal cortex in dementia with Lewy bodies. Neurology 53(9):2003–2009PubMedCrossRefGoogle Scholar
  95. 95.
    Brun A, Gustafson L (1976) Distribution of cerebral degeneration in Alzheimer’s disease. A clinico-pathological study. Arch Psychiatr Nervenkr 223(1):15–33PubMedCrossRefGoogle Scholar
  96. 96.
    Kantarci K, Lowe VJ, Boeve BF, Weigand SD, Senjem ML, Przybelski SA, Dickson DW, Parisi JE, Knopman DS, Smith GE, Ferman TJ, Petersen RC, Jack CR Jr (2012) Multimodality imaging characteristics of dementia with Lewy bodies. Neurobiol Aging 33(9):2091–2105. doi: 10.1016/j.neurobiolaging.2011.09.024 PubMedCrossRefGoogle Scholar
  97. 97.
    MacKay S, Meyerhoff DJ, Constans JM, Norman D, Fein G, Weiner MW (1996) Regional gray and white matter metabolite differences in subjects with AD, with subcortical ischemic vascular dementia, and elderly controls with 1H magnetic resonance spectroscopic imaging. Arch Neurol 53(2):167–174PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Ernst T, Chang L, Melchor R, Mehringer CM (1997) Frontotemporal dementia and early Alzheimer disease: differentiation with frontal lobe H-1 MR spectroscopy. Radiology 203(3):829–836PubMedCrossRefGoogle Scholar
  99. 99.
    Boeve BF, Hutton M (2008) Refining frontotemporal dementia with parkinsonism linked to chromosome 17: introducing FTDP-17 (MAPT) and FTDP-17 (PGRN). Arch Neurol 65(4):460–464PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, Pickering-Brown S, Chakraverty S, Isaacs A, Grover A, Hackett J, Adamson J, Lincoln S, Dickson D, Davies P, Petersen RC, Stevens M, de Graaff E, Wauters E, van Baren J, Hillebrand M, Joosse M, Kwon JM, Nowotny P, Che LK, Norton J, Morris JC, Reed LA, Trojanowski J, Basun H, Lannfelt L, Neystat M, Fahn S, Dark F, Tannenberg T, Dodd PR, Hayward N, Kwok JB, Schofield PR, Andreadis A, Snowden J, Craufurd D, Neary D, Owen F, Oostra BA, Hardy J, Goate A, van Swieten J, Mann D, Lynch T, Heutink P (1998) Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393(6686):702–705PubMedCrossRefGoogle Scholar
  101. 101.
    Rademakers R, Cruts M, van Broeckhoven C (2004) The role of tau (MAPT) in frontotemporal dementia and related tauopathies. Hum Mutat 24(4):277–295PubMedCrossRefGoogle Scholar
  102. 102.
    Foster NL, Wilhelmsen K, Sima AA, Jones MZ, D’Amato CJ, Gilman S (1997) Frontotemporal dementia and parkinsonism linked to chromosome 17: a consensus conference. Conference Participants. Ann Neurol 41(6):706–715PubMedCrossRefGoogle Scholar
  103. 103.
    Whitwell JL, Josephs KA, Avula R, Tosakulwong N, Weigand SD, Senjem ML, Vemuri P, Jones DT, Gunter JL, Baker M, Wszolek ZK, Knopman DS, Rademakers R, Petersen RC, Boeve BF, Jack CR Jr (2011) Altered functional connectivity in asymptomatic MAPT subjects: a comparison to bvFTD. Neurology 77(9):866–874. doi: 10.1212/WNL.0b013e31822c61f2 PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Kantarci K, Boeve BF, Wszolek ZK, Rademakers R, Whitwell JL, Baker MC, Senjem ML, Samikoglu AR, Knopman DS, Petersen RC, Jack CR Jr (2010) MRS in presymptomatic MAPT mutation carriers: a potential biomarker for tau-mediated pathology. Neurology 75(9):771–778. doi: 10.1212/WNL.0b013e3181f073c7 PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Kantarci K (2013) Proton MRS in mild cognitive impairment. J Magn Reson Imaging 37(4):770–777. doi: 10.1002/jmri.23800 PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Graff-Radford J, Kantarci K (2013) Magnetic resonance spectroscopy in Alzheimer’s disease. Neuropsychiatr Dis Treat 9:687–696. doi: 10.2147/NDT.S35440 PubMedPubMedCentralGoogle Scholar
  107. 107.
    Kantarci K (2013) Magnetic resonance spectroscopy in common dementias. Neuroimaging Clin N Am 23(3):393–406. doi: 10.1016/j.nic.2012.10.004 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of NeurologyMayo ClinicRochesterUSA
  2. 2.Department of RadiologyMayo ClinicRochesterUSA

Personalised recommendations