Skip to main content

Methodology of Clinical MRS: Technical Challenges and Solutions

  • Chapter
  • First Online:
Magnetic Resonance Spectroscopy of Degenerative Brain Diseases

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

  • 889 Accesses

Abstract

For certain applications in the brain, proton MRS has evolved from a research tool into a clinically viable application, useful for studying diseases and clinically relevant disease parameters. It is however technically challenging to obtain high-quality MR spectra and precisely measure subtle neurochemical changes in degenerative brain diseases. In this chapter these technical challenges will be discussed and potential solutions will be outlined. After introducing the sensitivity challenge of MRS, different methods for localization of a volume of interest are summarized. Subsequently, solutions to suppress the large water signal and unwanted residual signals from outside the volume of interest are discussed together with shimming, culminating in a description of the different calibration steps covering all these issues and an overview of methods for estimating metabolite concentrations from MRS data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Oz G, Alger JR, Barker PB, Bartha R, Bizzi A, Boesch C, Bolan PJ, Brindle KM, Cudalbu C, Dincer A, Dydak U, Emir UE, Frahm J, Gonzalez RG, Gruber S, Gruetter R, Gupta RK, Heerschap A, Henning A, Hetherington HP, Howe FA, Huppi PS, Hurd RE, Kantarci K, Klomp DW, Kreis R, Kruiskamp MJ, Leach MO, Lin AP, Luijten PR, Marjanska M, Maudsley AA, Meyerhoff DJ, Mountford CE, Nelson SJ, Pamir MN, Pan JW, Peet AC, Poptani H, Posse S, Pouwels PJ, Ratai EM, Ross BD, Scheenen TW, Schuster C, Smith IC, Soher BJ, Tkac I, Vigneron DB, Kauppinen RA, Group MRSC (2014) Clinical proton MR spectroscopy in central nervous system disorders. Radiology 270(3):658–679. doi:10.1148/radiol.13130531

    Article  PubMed  Google Scholar 

  2. Andronesi OC, Kim GS, Gerstner E, Batchelor T, Tzika AA, Fantin VR, Vander Heiden MG, Sorensen AG (2012) Detection of 2-hydroxyglutarate in IDH-mutated glioma patients by in vivo spectral-editing and 2D correlation magnetic resonance spectroscopy. Sci Transl Med 4(116):116ra114. doi:10.1126/scitranslmed.3002693

    Article  CAS  Google Scholar 

  3. Bottomley PA (1987) Spatial localization in NMR spectroscopy in vivo. Ann N Y Acad Sci 508:333–348

    Article  CAS  PubMed  Google Scholar 

  4. Scheenen TW, Klomp DW, Wijnen JP, Heerschap A (2008) Short echo time 1H-MRSI of the human brain at 3T with minimal chemical shift displacement errors using adiabatic refocusing pulses. Magn Reson Med 59(1):1–6. doi:10.1002/mrm.21302

    Article  CAS  PubMed  Google Scholar 

  5. Garwood M, DelaBarre L (2001) The return of the frequency sweep: designing adiabatic pulses for contemporary NMR. J Magn Reson 153(2):155–177. doi:10.1006/jmre.2001.2340

    Article  CAS  PubMed  Google Scholar 

  6. Slotboom J, Mehlkopf AF, Bovee WMMJ (1991) A single-shot localization pulse sequence suited for coils with inhomogeneous Rf fields using adiabatic slice-selective Rf pulses. J Magn Reson 95(2):396–404. doi:10.1016/0022-2364(91)90229-M

    Article  Google Scholar 

  7. Oz G, Tkac I (2011) Short-echo, single-shot, full-intensity proton magnetic resonance spectroscopy for neurochemical profiling at 4 T: validation in the cerebellum and brainstem. Magn Reson Med 65(4):901–910. doi:10.1002/mrm.22708

    Article  CAS  PubMed  Google Scholar 

  8. Bruhn H, Frahm J, Gyngell ML, Merboldt KD, Hanicke W, Sauter R (1991) Localized proton NMR spectroscopy using stimulated echoes: applications to human skeletal muscle in vivo. Magn Reson Med 17(1):82–94

    Article  CAS  PubMed  Google Scholar 

  9. Frahm J, Bruhn H, Gyngell ML, Merboldt KD, Hanicke W, Sauter R (1989) Localized high-resolution proton NMR spectroscopy using stimulated echoes: initial applications to human brain in vivo. Magn Reson Med 9(1):79–93

    Article  CAS  PubMed  Google Scholar 

  10. Haase A, Frahm J, Matthaei D, Hanicke W, Bomsdorf H, Kunz D, Tischler R (1986) MR imaging using stimulated echoes (STEAM). Radiology 160(3):787–790. doi:10.1148/radiology.160.3.3737918

    Article  CAS  PubMed  Google Scholar 

  11. Ordidge RJ, Bowley RM, McHale G (1988) A general approach to selection of multiple cubic volume elements using the ISIS technique. Magn Reson Med 8(3):323–331

    Article  CAS  PubMed  Google Scholar 

  12. Mlynarik V, Gambarota G, Frenkel H, Gruetter R (2006) Localized short-echo-time proton MR spectroscopy with full signal-intensity acquisition. Magn Reson Med 56(5):965–970. doi:10.1002/mrm.21043

    Article  CAS  PubMed  Google Scholar 

  13. Adalsteinsson E, Star-Lack J, Meyer CH, Spielman DM (1999) Reduced spatial side lobes in chemical-shift imaging. Magn Reson Med 42(2):314–323

    Article  CAS  PubMed  Google Scholar 

  14. Duyn JH, Moonen CT (1993) Fast proton spectroscopic imaging of human brain using multiple spin-echoes. Magn Reson Med 30(4):409–414

    Article  CAS  PubMed  Google Scholar 

  15. Adalsteinsson E, Irarrazabal P, Topp S, Meyer C, Macovski A, Spielman DM (1998) Volumetric spectroscopic imaging with spiral-based k-space trajectories. Magn Reson Med 39(6):889–898

    Article  CAS  PubMed  Google Scholar 

  16. Haase A, Frahm J, Hanicke W, Matthaei D (1985) 1H NMR chemical shift selective (CHESS) imaging. Phys Med Biol 30(4):341–344

    Article  CAS  PubMed  Google Scholar 

  17. Ogg RJ, Kingsley PB, Taylor JS (1994) WET, a T1- and B1-insensitive water-suppression method for in vivo localized 1H NMR spectroscopy. J Magn Reson B 104(1):1–10

    Article  CAS  PubMed  Google Scholar 

  18. Tkac I, Starcuk Z, Choi IY, Gruetter R (1999) In vivo 1H NMR spectroscopy of rat brain at 1 ms echo time. Magn Reson Med 41(4):649–656

    Article  CAS  PubMed  Google Scholar 

  19. Li Y, Osorio JA, Ozturk-Isik E, Chen AP, Xu D, Crane JC, Cha S, Chang S, Berger MS, Vigneron DB, Nelson SJ (2006) Considerations in applying 3D PRESS H-1 brain MRSI with an eight-channel phased-array coil at 3 T. Magn Reson Imaging 24(10):1295–1302. doi:10.1016/j.mri.2006.07.012

    Article  PubMed  Google Scholar 

  20. Tran TKC, Vigneron DB, Sailasuta N, Tropp J, Le Roux P, Kurhanewicz J, Nelson S, Hurd R (2000) Very selective suppression pulses for clinical MRSI studies of brain and prostate cancer. Magn Reson Med 43(1):23–33. doi:10.1002/(Sici)1522-2594(200001)43:1<23::Aid-Mrm4>3.0.Co;2-E

    Article  CAS  PubMed  Google Scholar 

  21. Henning A, Fuchs A, Murdoch JB, Boesiger P (2009) Slice-selective FID acquisition, localized by outer volume suppression (FIDLOVS) for 1H-MRSI of the human brain at 7 T with minimal signal loss. NMR Biomed 22(7):683–696. doi:10.1002/nbm.1366

    Article  CAS  PubMed  Google Scholar 

  22. Gruetter R (1993) Automatic, localized in vivo adjustment of all 1st-order and 2nd-order shim coils. Magn Reson Med 29(6):804–811. doi:10.1002/mrm.1910290613

    Article  CAS  PubMed  Google Scholar 

  23. Li SZ, Dardzinski BJ, Collins CM, Yang QX, Smith MB (1996) Three-dimensional mapping of the static magnetic field inside the human head. Magn Reson Med 36(5):705–714. doi:10.1002/mrm.1910360509

    Article  CAS  PubMed  Google Scholar 

  24. Gruetter R, Tkac I (2000) Field mapping without reference scan using asymmetric echo-planar techniques. Magn Reson Med 43(2):319–323. doi:10.1002/(Sici)1522-2594(200002)43:2<319::Aid-Mrm22>3.0.Co;2-1

    Article  CAS  PubMed  Google Scholar 

  25. Hetherington HP, Chu WJ, Gonen O, Pan JW (2006) Robust fully automated shimming of the human brain for high-field H-1 spectroscopic imaging. Magn Reson Med 56(1):26–33. doi:10.1002/Mrm.20941

    Article  CAS  PubMed  Google Scholar 

  26. van Gelderen P, de Zwart JA, Starewicz P, Hinks RS, Duyn JH (2007) Real-time shimming to compensate for respiration-induced B-0 fluctuations. Magn Reson Med 57(2):362–368. doi:10.1002/Mrm.21136

    Article  PubMed  Google Scholar 

  27. Wilm BJ, Duerst Y, Dietrich BE, Wyss M, Vannesjo SJ, Schmid T, Brunner DO, Barmet C, Pruessmann KP (2014) Feedback field control improves linewidths in in vivo magnetic resonance spectroscopy. Magn Reson Med 71(5):1657–1662. doi:10.1002/Mrm.24836

    Article  PubMed  Google Scholar 

  28. Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30(6):672–679

    Article  CAS  PubMed  Google Scholar 

  29. Naressi A, Couturier C, Devos JM, Janssen M, Mangeat C, de Beer R, Graveron-Demilly D (2001) Java-based graphical user interface for the MRUI quantitation package. MAGMA 12(2–3):141–152

    Article  CAS  PubMed  Google Scholar 

  30. Tkac I, Andersen P, Adriany G, Merkle H, Ugurbil K, Gruetter R (2001) In vivo 1H NMR spectroscopy of the human brain at 7 T. Magn Reson Med 46(3):451–456

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom W. Scheenen Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Philips, B.W.J., Scheenen, T.W. (2016). Methodology of Clinical MRS: Technical Challenges and Solutions. In: Öz, G. (eds) Magnetic Resonance Spectroscopy of Degenerative Brain Diseases. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-319-33555-1_3

Download citation

Publish with us

Policies and ethics