Methodology of MRS in Animal Models: Technical Challenges and Solutions

Part of the Contemporary Clinical Neuroscience book series (CCNE)


In vivo 1H MR spectroscopy is a unique technique, which is capable of providing neurochemical information from a selected volume of tissue noninvasively. However, the richness and reliability of neurochemical information gained by MRS depends heavily on the data acquisition and processing techniques utilized. What makes the use of MRS in neuroscience and medical research even more challenging is the fact that the most advanced MRS techniques developed in the last 15 years are not routinely provided by MR scanner vendors. This chapter provides an overview of the MRS methodology for studying animal models of human neurodegenerative diseases. The chapter’s subsections focus on MRS data acquisition, processing, and metabolite quantification. The data acquisition section outlines some basic hardware requirements, B0 shimming, water suppression, and localization techniques. The data processing section describes methods applied on acquired MRS data before metabolite quantification, such as frequency, phase, and eddy current correction. The quantification section focuses specifically on LCModel analysis. Finally, some examples, demonstrating the potentials of high-field 1H MRS for neurochemical profiling in mice, are presented.


Localization PRESS STEAM LASER SPECIAL B0 shimming FASTMAP Chemical shift displacement error Water suppression Eddy currents Quantification 


  1. 1.
    Duarte JM, Lei H, Mlynárik V, Gruetter R (2012) The neurochemical profile quantified by in vivo 1H NMR spectroscopy. Neuroimage 61(2):342–362. doi: 10.1016/j.neuroimage.2011.12.038 CrossRefPubMedGoogle Scholar
  2. 2.
    Tkáč I, Henry PG, Andersen P, Keene CD, Low WC, Gruetter R (2004) Highly resolved in vivo 1H NMR spectroscopy of the mouse brain at 9.4 T. Magn Reson Med 52(3):478–484CrossRefPubMedGoogle Scholar
  3. 3.
    Miyasaka N, Takahashi K, Hetherington HP (2006) Fully automated shim mapping method for spectroscopic imaging of the mouse brain at 9.4 T. Magn Reson Med 55(1):198–202. doi: 10.1002/mrm.20731 CrossRefPubMedGoogle Scholar
  4. 4.
    Gruetter R (1993) Automatic, localized in vivo adjustment of all first- and second-order shim coils. Magn Reson Med 29(6):804–811CrossRefPubMedGoogle Scholar
  5. 5.
    Gruetter R, Tkáč I (2000) Field mapping without reference scan using asymmetric echo-planar techniques. Magn Reson Med 43(2):319–323CrossRefPubMedGoogle Scholar
  6. 6.
    Öz G, Kittelson E, Demirgoz D, Rainwater O, Eberly LE, Orr HT, Clark HB (2015) Assessing recovery from neurodegeneration in spinocerebellar ataxia 1: comparison of in vivo magnetic resonance spectroscopy with motor testing, gene expression and histology. Neurobiol Dis 74:158–166. doi: 10.1016/j.nbd.2014.11.011 CrossRefPubMedGoogle Scholar
  7. 7.
    Öz G, Vollmers ML, Nelson CD, Shanley R, Eberly LE, Orr HT, Clark HB (2011) In vivo monitoring of recovery from neurodegeneration in conditional transgenic SCA1 mice. Exp Neurol 232(2):290–298. doi: 10.1016/j.expneurol.2011.09.021 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Wallin DJ, Tkáč I, Stucker S, Ennis KM, Sola-Visner M, Rao R, Georgieff MK (2015) Phlebotomy-induced anemia alters hippocampal neurochemistry in neonatal mice. Pediatr Res 77(6):765–771. doi: 10.1038/pr.2015.41 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Alf MF, Lei H, Berthet C, Hirt L, Gruetter R, Mlynárik V (2012) High-resolution spatial mapping of changes in the neurochemical profile after focal ischemia in mice. NMR Biomed 25(2):247–254. doi: 10.1002/nbm.1740 CrossRefPubMedGoogle Scholar
  10. 10.
    Mlynárik V, Kohler I, Gambarota G, Vaslin A, Clarke PG, Gruetter R (2008) Quantitative proton spectroscopic imaging of the neurochemical profile in rat brain with microliter resolution at ultra-short echo times. Magn Reson Med 59(1):52–58. doi: 10.1002/mrm.21447 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bottomley PA (1987) Spatial localization in NMR-spectroscopy in vivo. Ann N Y Acad Sci 508:333–348. doi: 10.1111/j.1749-6632.1987.tb32915.x CrossRefPubMedGoogle Scholar
  12. 12.
    Frahm J, Merboldt KD, Hanicke W (1987) Localized proton spectroscopy using stimulated echoes. J Magn Reson 72(3):502–508. doi: 10.1016/0022-2364(87)90154-5 Google Scholar
  13. 13.
    Tkáč I, Starcuk Z, Choi IY, Gruetter R (1999) In vivo 1H NMR spectroscopy of rat brain at 1 ms echo time. Magn Reson Med 41(4):649–656CrossRefPubMedGoogle Scholar
  14. 14.
    Garwood M, DelaBarre L (2001) The return of the frequency sweep: designing adiabatic pulses for contemporary NMR. J Magn Reson 153(2):155–177. doi: 10.1006/jmre.2001.2340 CrossRefPubMedGoogle Scholar
  15. 15.
    Öz G, Nelson CD, Koski DM, Henry PG, Marjanska M, Deelchand DK, Shanley R, Eberly LE, Orr HT, Clark HB (2010) Noninvasive detection of presymptomatic and progressive neurodegeneration in a mouse model of spinocerebellar ataxia type 1. J Neurosci 30(10):3831–3838. doi: 10.1523/JNEUROSCI.5612-09.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Mlynárik V, Gambarota G, Frenkel H, Gruetter R (2006) Localized short-echo-time proton MR spectroscopy with full signal-intensity acquisition. Magn Reson Med 56(5):965–970. doi: 10.1002/mrm.21043 CrossRefPubMedGoogle Scholar
  17. 17.
    Ordidge RJ, Connelly A, Lohman JAB (1986) Image-selected in vivo spectroscopy (ISIS)—a new technique for spatially selective NMR-spectroscopy. J Magn Reson 66(2):283–294. doi: 10.1016/0022-2364(86)90031-4 Google Scholar
  18. 18.
    Vanhamme L, Fierro RD, Van Huffel S, de Beer R (1998) Fast removal of residual water in proton spectra. J Magn Reson 132(2):197–203CrossRefPubMedGoogle Scholar
  19. 19.
    Ogg RJ, Kingsley PB, Taylor JS (1994) WET, a T1- and B1-insensitive water-suppression method for in vivo localized 1H NMR spectroscopy. J Magn Reson B 104(1):1–10CrossRefPubMedGoogle Scholar
  20. 20.
    Zacharoff L, Tkáč I, Song Q, Tang C, Bolan PJ, Mangia S, Henry PG, Li T, Dubinsky JM (2012) Cortical metabolites as biomarkers in the R6/2 model of Huntington’s disease. J Cereb Blood Flow Metab 32(3):502–514. doi: 10.1038/jcbfm.2011.157 CrossRefPubMedGoogle Scholar
  21. 21.
    Tkáč I, Dubinsky JM, Keene CD, Gruetter R, Low WC (2007) Neurochemical changes in Huntington R6/2 mouse striatum detected by in vivo 1H NMR spectroscopy. J Neurochem 100(5):1397–1406CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Tkáč I, Henry PG, Zacharoff L, Wedel M, Gong W, Deelchand DK, Li T, Dubinsky JM (2012) Homeostatic adaptations in brain energy metabolism in mouse models of Huntington disease. J Cereb Blood Flow Metab 32(11):1977–1988. doi: 10.1038/jcbfm.2012.104 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Emir UE, Brent Clark H, Vollmers ML, Eberly LE, Öz G (2013) Non-invasive detection of neurochemical changes prior to overt pathology in a mouse model of spinocerebellar ataxia type 1. J Neurochem. doi: 10.1111/jnc.12435 PubMedPubMedCentralGoogle Scholar
  24. 24.
    das Neves Duarte JM, Kulak A, Gholam-Razaee MM, Cuenod M, Gruetter R, Do KQ (2012) N-acetylcysteine normalizes neurochemical changes in the glutathione-deficient schizophrenia mouse model during development. Biol Psychiatry 71(11):1006–1014. doi: 10.1016/j.biopsych.2011.07.035 CrossRefPubMedGoogle Scholar
  25. 25.
    Kulak A, Duarte JM, Do KQ, Gruetter R (2010) Neurochemical profile of the developing mouse cortex determined by in vivo 1H NMR spectroscopy at 14.1 T and the effect of recurrent anaesthesia. J Neurochem 115(6):1466–1477. doi: 10.1111/j.1471-4159.2010.07051.x CrossRefPubMedGoogle Scholar
  26. 26.
    Mlynárik V, Cacquevel M, Sun-Reimer L, Janssens S, Cudalbu C, Lei H, Schneider BL, Aebischer P, Gruetter R (2012) Proton and phosphorus magnetic resonance spectroscopy of a mouse model of Alzheimer’s disease. J Alzheimers Dis 31(Suppl 3):S87–S99. doi: 10.3233/JAD-2012-112072 PubMedGoogle Scholar
  27. 27.
    Klose U (1990) In vivo proton spectroscopy in presence of eddy currents. Magn Reson Med 14(1):26–30CrossRefPubMedGoogle Scholar
  28. 28.
    Naressi A, Couturier C, Castang I, de Beer R, Graveron-Demilly D (2001) Java-based graphical user interface for MRUI, a software package for quantitation of in vivo/medical magnetic resonance spectroscopy signals. Comput Biol Med 31(4):269–286CrossRefPubMedGoogle Scholar
  29. 29.
    Ratiney H, Sdika M, Coenradie Y, Cavassila S, van Ormondt D, Graveron-Demilly D (2005) Time-domain semi-parametric estimation based on a metabolite basis set. NMR Biomed 18(1):1–13. doi: 10.1002/nbm.895 CrossRefPubMedGoogle Scholar
  30. 30.
    Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30(6):672–679CrossRefPubMedGoogle Scholar
  31. 31.
    Cudalbu C, Bucur A, Graveron-Demilly D, Beuf O, Cavassila S (2007) Comparison of two strategies of background-accommodation: influence on the metabolite concentration estimation from in vivo Magnetic Resonance Spectroscopy data. Conf Proc IEEE Eng Med Biol Soc 2007:2077–2080. doi: 10.1109/IEMBS.2007.4352730 PubMedGoogle Scholar
  32. 32.
    Govindaraju V, Young K, Maudsley AA (2000) Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed 13(3):129–153CrossRefPubMedGoogle Scholar
  33. 33.
    Mlynárik V, Cudalbu C, Xin L, Gruetter R (2008) 1H NMR spectroscopy of rat brain in vivo at 14.1 Tesla: improvements in quantification of the neurochemical profile. J Magn Reson 194(2):163–168. doi: 10.1016/j.jmr.2008.06.019 CrossRefPubMedGoogle Scholar
  34. 34.
    Pfeuffer J, Tkáč I, Provencher SW, Gruetter R (1999) Toward an in vivo neurochemical profile: quantification of 18 metabolites in short-echo-time 1H NMR spectra of the rat brain. J Magn Reson 141(1):104–120CrossRefPubMedGoogle Scholar
  35. 35.
    Kunz N, Cudalbu C, Mlynárik V, Hüppi PS, Sizonenko SV, Gruetter R (2010) Diffusion-weighted spectroscopy: a novel approach to determine macromolecule resonances in short-echo time 1H-MRS. Magn Reson Med 64(4):939–946. doi: 10.1002/mrm.22490 CrossRefPubMedGoogle Scholar
  36. 36.
    Cudalbu C, Mlynárik V, Gruetter R (2012) Handling macromolecule signals in the quantification of the neurochemical profile. J Alzheimers Dis 31(Suppl 3):S101–S115. doi: 10.3233/JAD-2012-120100 PubMedGoogle Scholar
  37. 37.
    Tkáč I, Rao R, Georgieff MK, Gruetter R (2003) Developmental and regional changes in the neurochemical profile of the rat brain determined by in vivo 1H NMR spectroscopy. Magn Reson Med 50(1):24–32CrossRefPubMedGoogle Scholar
  38. 38.
    Heinzer-Schweizer S, De Zanche N, Pavan M, Mens G, Sturzenegger U, Henning A, Boesiger P (2010) In-vivo assessment of tissue metabolite levels using 1H MRS and the Electric REference To access In vivo Concentrations (ERETIC) method. NMR Biomed 23(4):406–413. doi: 10.1002/nbm.1476 PubMedGoogle Scholar
  39. 39.
    Cudalbu C, Mlynárik V, Xin L, Gruetter R (2009) Comparison of T1 relaxation times of the neurochemical profile in rat brain at 9.4 tesla and 14.1 tesla. Magn Reson Med 62(4):862–867. doi: 10.1002/mrm.22022 CrossRefPubMedGoogle Scholar
  40. 40.
    de Graaf RA, Brown PB, McIntyre S, Nixon TW, Behar KL, Rothman DL (2006) High magnetic field water and metabolite proton T1 and T2 relaxation in rat brain in vivo. Magn Reson Med 56(2):386–394. doi: 10.1002/mrm.20946 CrossRefPubMedGoogle Scholar
  41. 41.
    Xin L, Gambarota G, Mlynárik V, Gruetter R (2008) Proton T2 relaxation time of J-coupled cerebral metabolites in rat brain at 9.4 T. NMR Biomed 21(4):396–401. doi: 10.1002/nbm.1205 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisUSA

Personalised recommendations