Magnetic Resonance Spectroscopy in Epilepsy

Part of the Contemporary Clinical Neuroscience book series (CCNE)


This review discusses the utilization of MR spectroscopy and spectroscopic imaging for epilepsy from a clinical localization and research perspective. As a relatively common neurological problem that affects the entire age range, the understanding and management of epilepsy has benefited substantially from the recent past improvements in anatomical MRI quality and resolution. With multiple facets of epilepsy dysfunction identified metabolically and neurophysiologically, the sensitivity of metabolic and functional MR imaging to such processes suggest that continued MR development can be important as well. Metabolically and spectroscopically, much of the challenge for the most common type of clinical epilepsy (localization related) is the sizable interpatient variability for both location of abnormality and severity of injury as well as the need to adequately evaluate the neocortical ribbon. These factors combine to place emphasis on developments at high field for SNR and voxel size, acceleration, and adequate lipid suppression. From a basic science perspective, substantial work has shown that metabolic and cellular changes are well detected by MRS early and late in the process of epileptogenesis, consistent with major shifts in neuronal and astrocytic processes. Thus, the role of MR spectroscopy has much room to progress for clinical and research applications in epilepsy.


Localization-related epilepsy Primary generalized epilepsy Medial temporal lobe Bioenergetics Glial/neuronal unit GABA Glutamate 


  1. 1.
    Wiebe S, Camfield P, Jetté N, Burneo JG (2009) Epidemiology of epilepsy: prevalence, impact, comorbidity and disparities. Can J Neurol Sci 36(Suppl 2):S7–S16PubMedGoogle Scholar
  2. 2.
    Jallon P (1997) Epilepsy in developing countries. Epilepsia 38:1143–1151CrossRefPubMedGoogle Scholar
  3. 3.
    Jallon P, Latour P (2005) Epidemiology of idiopathic generalized epilepsies. Epilepsia 46(Suppl 9):10–4CrossRefPubMedGoogle Scholar
  4. 4.
    Cockerell OC, Johnson AL, Sander JW, Shorvon SD (1997) Prognosis of epilepsy: a review and further analysis of the first nine years of the British National General Practice Study of Epilepsy, a prospective population-based study. Epilepsia 38(1):31–46CrossRefPubMedGoogle Scholar
  5. 5.
    Schuele SU, Lüders HO (2008) Intractable epilepsy: management and therapeutic alternatives. Lancet Neurol 7(6):514–524CrossRefPubMedGoogle Scholar
  6. 6.
    Téllez-Zenteno JF, Dhar R, Wiebe S (2005) Long-term seizure outcomes following epilepsy surgery: a systematic review and meta-analysis. Brain 128(Pt 5):1188–1198CrossRefPubMedGoogle Scholar
  7. 7.
    Spencer SS, Berg AT, Vickrey BG, Sperling MR, Bazil CW, Shinnar S, Langfitt JT, Walczak TS, Pacia SV, Multicenter Study of Epilepsy Surgery (2005) Predicting long-term seizure outcome after resective epilepsy surgery: the multicenter study. Neurology 65:912–8CrossRefPubMedGoogle Scholar
  8. 8.
    Hauptman JS, Mathern GW (2012) Surgical treatment of epilepsy associated with cortical dysplasia: 2012 update. Epilepsia 53(Suppl 4):98–104CrossRefPubMedGoogle Scholar
  9. 9.
    Kato M, Malamut BL, Hosokawa S, O’Neill RR, Wakisaka S, Caveness WF (1978) Local glucose utilization in cortical and subcortical structures during focal motor seizures. Trans Am Neurol Assoc 103:39–42PubMedGoogle Scholar
  10. 10.
    Behar KL, Fitzpatrick SM, Hetherington HP, Shulman RG (1993) Cerebral metabolic studies in vivo by combined 1H/31P and 1H/13C NMR spectroscopic methods. Acta Neurochir Suppl (Wien) 57:9–20Google Scholar
  11. 11.
    Najm IM, Wang Y, Hong SC, Lüders HO, Ng TC, Comair YG (1997) Temporal changes in proton MRS metabolites after kainic acid-induced seizures in rat brain. Epilepsia 38(1):87–94CrossRefPubMedGoogle Scholar
  12. 12.
    van Eijsden P, Notenboom RG, Wu O, de Graan PN, van Nieuwenhuizen O, Nicolay K, Braun KP (2004) In vivo 1H magnetic resonance spectroscopy, T2-weighted and diffusion-weighted MRI during lithium-pilocarpine-induced status epilepticus in the rat. Brain Res 1030(1):11–18CrossRefPubMedGoogle Scholar
  13. 13.
    Temkin NR (2001) Antiepileptogenesis and seizure prevention trials with antiepileptic drugs: meta-analysis of controlled trials. Epilepsia 42(4):515–524CrossRefPubMedGoogle Scholar
  14. 14.
    Dudek FE, Sutula TP (2007) Epileptogenesis in the dentate gyrus: a critical perspective. Prog Brain Res 163:755–773CrossRefPubMedGoogle Scholar
  15. 15.
    Pitkänen A, Lukasiuk K (2009) Molecular and cellular basis of epileptogenesis in symptomatic epilepsy. Epilepsy Behav 14(Suppl 1):16–25CrossRefPubMedGoogle Scholar
  16. 16.
    Hammen T, Kuzniecky R (2012) Magnetic resonance spectroscopy in epilepsy. Handb Clin Neurol 107:399–408CrossRefPubMedGoogle Scholar
  17. 17.
    Maudsley AA, Domenig C, Ramsay RE, Bowen BC (2010) Application of volumetric MR spectroscopic imaging for localization of neocortical epilepsy. Epilepsy Res 88(2–3):127–138CrossRefPubMedGoogle Scholar
  18. 18.
    Pan JW, Duckrow RB, Gerrard J, Ong C, Hirsch LJ, Resor SR Jr, Zhang Y, Petroff O, Spencer S, Hetherington HP, Spencer D (2013) 7T spectroscopic imaging in surgically treated epilepsy. Epilepsia 54(9):1668–1678CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Pan JW, Duckrow RB, Spencer D, Avdievich N, Hetherington HP (2013) Spectroscopic imaging of GABA in human brain at 7T. Magn Reson Med 69(2):310–316CrossRefPubMedGoogle Scholar
  20. 20.
    Pittau F, Grouiller F, Spinelli L, Seeck M, Michel CM, Vulliemoz S (2014) The role of functional neuroimaging in pre-surgical epilepsy evaluation. Front Neurol 5:31PubMedPubMedCentralGoogle Scholar
  21. 21.
    Filibian M, Frasca A, Maggioni D, Micotti E, Vezzani A, Ravizza T (2012) In vivo imaging of glia activation using 1H-magnetic resonance spectroscopy to detect putative biomarkers of tissue epileptogenicity. Epilepsia 53(11):1907–1916CrossRefPubMedGoogle Scholar
  22. 22.
    Pearce PS, deLanerolle N, Rapuano A, Hitchens K, Pan JW (2014) Spectroscopic imaging in early post‐status epilepticus in a rodent model. American Epilepsy Society Annual Meeting Seattle WA, 3.072, December 2014Google Scholar
  23. 23.
    Choy M, Dubé CM, Patterson K, Barnes SR, Maras P, Blood AB, Hasso AN, Obenaus A, Baram TZ (2014) A novel, noninvasive, predictive epilepsy biomarker with clinical potential. J Neurosci 34(26):8672–8684CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Baron M, Kudin AP, Kunz WS (2007) Mitochondrial dysfunction in neurodegenerative disorders. Biochem Soc Trans 35(Pt 5):1228–1231CrossRefPubMedGoogle Scholar
  25. 25.
    Dingledine R, Varvel NH, Dudek FE (2014) When and how do seizures kill neurons, and is cell death relevant to epileptogenesis? Adv Exp Med Biol 813:109–122CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hauser WA, Lee JR (2002) Do seizures beget seizures? Prog Brain Res 135:215–219CrossRefPubMedGoogle Scholar
  27. 27.
    Black LC, Schefft BK, Howe SR, Szaflarski JP, Yeh HS, Privitera MD (2010) The effect of seizures on working memory and executive functioning performance. Epilepsy Behav 17(3):412–419CrossRefPubMedGoogle Scholar
  28. 28.
    Voltzenlogel V, Vignal JP, Hirsch E, Manning L (2014) The influence of seizure frequency on anterograde and remote memory in mesial temporal lobe epilepsy. Seizure 23(9):792–798CrossRefPubMedGoogle Scholar
  29. 29.
    de Lanerolle NC, Lee TS, Spencer DD (2010) Astrocytes and epilepsy. Neurotherapeutics 7(4):424–438CrossRefPubMedGoogle Scholar
  30. 30.
    Folbergrová J, Kunz WS (2012) Mitochondrial dysfunction in epilepsy. Mitochondrion 12(1):35–40CrossRefPubMedGoogle Scholar
  31. 31.
    Patel TB, Clark JB (1979) Synthesis of N-acetyl-L-aspartate by rat brain mitochondria and its involvement in mitochondrial/cytosolic carbon transport. Biochem J 184:539–546CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Urenjack J, Williams SR, Gadian DG, Noble M (1992) Specific expression of N-acetyl aspartate in neurons, oligodendrocyte type 2 astroyte progenitors and immature oligodendrocytes in vitro. J Neurochem 59:55–61CrossRefGoogle Scholar
  33. 33.
    Bates TE, Strangward M, Keelan J, Davey GP, Munro PM, Clark JB (1996) Inhibition of N-acetylaspartate production: implications for 1H MRS studies in vivo. Neuroreport 7:1397–1400CrossRefPubMedGoogle Scholar
  34. 34.
    Goldstein FB (1969) The enzymatic synthesis of N-acetyl-aspartatic acid by sub-cellular preparation of rat brain. J Biol Chem 244:4257–4260PubMedGoogle Scholar
  35. 35.
    Heales SJR, Davies SEC, Bates TE, Clark JB (1995) Depletion of brain glutathione is accompanied by impaired mitochondrial function and decreased N-acetylaspartate concentration. Neurochem Res 20:31–38CrossRefPubMedGoogle Scholar
  36. 36.
    Connett RJ (1988) Analysis of metabolic control: new insights using scaled creatine kinase model. Am J Physiol 254(6 Pt 2):R949–R959PubMedGoogle Scholar
  37. 37.
    Guevara CA, Blain CR, Stahl D, Lythgoe DJ, Leigh PN, Barker GJ (2010) Quantitative magnetic resonance spectroscopic imaging in Parkinson’s disease, progressive supranuclear palsy and multiple system atrophy. Eur J Neurol 17(9):1193–1202CrossRefPubMedGoogle Scholar
  38. 38.
    Muñoz Maniega S, Cvoro V, Chappell FM, Armitage PA, Marshall I, Bastin ME, Wardlaw JM (2008) Changes in NAA and lactate following ischemic stroke: a serial MR spectroscopic imaging study. Neurology 71(24):1993–1999CrossRefPubMedGoogle Scholar
  39. 39.
    Suhy J, Rooney WD, Goodkin DE, Capizzano AA, Soher BJ, Maudsley AA, Waubant E, Andersson PB, Weiner MW (2000) 1H MRSI comparison of white matter and lesions in primary progressive and relapsing-remitting MS. Mult Scler 6(3):148–155PubMedPubMedCentralGoogle Scholar
  40. 40.
    Huisman MC, van Golen LW, Hoetjes NJ, Greuter HN, Schober P, Ijzerman RG, Diamant M, Lammertsma AA (2012) Cerebral blood flow and glucose metabolism in healthy volunteers measured using a high-resolution PET scanner. EJNMMI Res 2(1):63CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Eggers C, Hilker R, Burghaus L, Schumacher B, Heiss WD (2009) High resolution positron emission tomography demonstrates basal ganglia dysfunction in early Parkinson’s disease. J Neurol Sci 276(1–2):27–30. doi: 10.1016/j.jns.2008.08.029 CrossRefPubMedGoogle Scholar
  42. 42.
    Spencer S, Huh L (2008) Outcomes of epilepsy surgery in adults and children. Lancet Neurol 7(6):525–537CrossRefPubMedGoogle Scholar
  43. 43.
    Spencer SS (1996) Long-term outcome after epilepsy surgery. Epilepsia 37(9):807–813CrossRefPubMedGoogle Scholar
  44. 44.
    Hetherington HP, Pan JW, Mason GF, Adams D, Vaughn MJ, Twieg DB, Pohost GM (1996) Quantitative 1H spectroscopic imaging of human brain at 4.1 T using image segmentation. Magn Reson Med 36(1):21–29CrossRefPubMedGoogle Scholar
  45. 45.
    Pouwels PJ, Frahm J (1998) Regional metabolite concentrations in human brain as determined by quantitative localized proton MRS. Magn Reson Med 39(1):53–60CrossRefPubMedGoogle Scholar
  46. 46.
    Schuff N, Ezekiel F, Gamst AC, Amend DL, Capizzano AA, Maudsley AA, Weiner MW (2001) Region and tissue differences of metabolites in normally aged brain using multislice 1H magnetic resonance spectroscopic imaging. Magn Reson Med 45(5):899–907CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Hugg JW, Laxer KD, Matson GB, Maudsley AA, Weiner MW (1993) Neuron loss localizes human temporal lobe epilepsy by in vivo proton magnetic resonance spectroscopic imaging. Ann Neurol 34(6):788–794CrossRefPubMedGoogle Scholar
  48. 48.
    Cendes F, Caramanos Z, Andermann F, Dubeau F, Arnold DL (1997) Proton magnetic resonance spectroscopic imaging and magnetic resonance imaging volumetry in the lateralization of temporal lobe epilepsy: a series of 100 patients. Ann Neurol 42(5):737–746CrossRefPubMedGoogle Scholar
  49. 49.
    Kuzniecky R, Hugg JW, Hetherington H, Butterworth E, Bilir E, Faught E, Gilliam F (1998) Relative utility of 1H spectroscopic imaging and hippocampal volumetry in the lateralization of mesial temporal lobe epilepsy. Neurology 51(1):66–71CrossRefPubMedGoogle Scholar
  50. 50.
    Hetherington HP, Kuzniecky RI, Vives K, Devinsky O, Pacia S, Luciano D, Vasquez B, Haut S, Spencer DD, Pan JW (2007) A subcortical network of dysfunction in TLE measured by MR spectroscopy. Neurology 69:2256–2265CrossRefPubMedGoogle Scholar
  51. 51.
    Pan JW, Lo KM, Hetherington HP (2012) Role of high degree and order B0 shimming for spectroscopic imaging at 7T. Magn Reson Med 68(4):1007–1017CrossRefPubMedGoogle Scholar
  52. 52.
    Pan JW, Spencer DD, Kuzniecky R, Duckrow RB, Hetherington H, Spencer SS (2012) Metabolic networks in epilepsy by MR spectroscopic imaging. Acta Neurol Scand 126(6):411–420CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Saransaari P, Oja SS (1997) Enhanced GABA release in cell-damaging conditions in the adult and developing mouse hippocampus. Int J Dev Neurosci 15(2):163–174CrossRefPubMedGoogle Scholar
  54. 54.
    Atwell D, Laughlin S (2001) An energy budget for signaling in the gray matter of the brain. J Cereb Blood Flow Metab 21(10):1133–1145CrossRefGoogle Scholar
  55. 55.
    Palma E, Amici M, Sobrero F, Spinelli G, Di Angelantonio S, Ragozzino D, Mascia A, Scoppetta C, Esposito V, Miledi R, Eusebi F (2006) Anomalous levels of Cl- transporters in the hippocampal subiculum from temporal lobe epilepsy patients make GABA excitatory. Proc Natl Acad Sci U S A 103(22):8465–8468CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Woo N, Lu J, England R, McClellan R, Dufour S, Mount D, Deutch A, Lovinger D, Delpire E (2002) Hyperexcitability and epilepsy associated with disruption of the mouse neuronal specific K-Cl cotransporter gene. Hippocampus 12(2):258–268CrossRefPubMedGoogle Scholar
  57. 57.
    Cavus I, Kasoff WS, Cassaday MP, Jacob R, Gueorguieva R, Sherwin RS, Krystal JH, Spencer DD, Abi-Saab WM (2005) Extracellular metabolites in the cortex and hippocampus of epileptic patients. Ann Neurol 57(2):226–235CrossRefPubMedGoogle Scholar
  58. 58.
    Petroff OA, Hyder F, Rothman DL, Mattson RH (2001) Homocarnosine and seizure control in juvenile myoclonic epilepsy and complex partial seizures. Neurology 56(6):709–715CrossRefPubMedGoogle Scholar
  59. 59.
    Jayakar P, Dunoyer C, Dean P, Ragheb J, Resnick T, Morrison G, Bhatia S, Duchowny M (2008) Epilepsy surgery in patients with normal or nonfocal MRI scans: integrative strategies offer long-term seizure relief. Epilepsia 49(5):758–764CrossRefPubMedGoogle Scholar
  60. 60.
    Siegel AM, Jobst BC, Thadani VM, Rhodes CH, Lewis PJ, Roberts DW, Williamson PD (2001) Medically intractable, localization-related epilepsy with normal MRI: presurgical evaluation and surgical outcome in 43 patients. Epilepsia 42(7):883–888CrossRefPubMedGoogle Scholar
  61. 61.
    Mueller SG, Laxer KD, Suhy J, Lopez RC, Flenniken DL, Weiner MW (2003) Spectroscopic metabolic abnormalities in mTLE with and without MRI evidence for mesial temporal sclerosis using hippocampal short-TE MRSI. Epilepsia 44:977–980CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Mueller SG, Ebel A, Barakos J, Scanlon C, Cheong I, Finlay D, Garcia P, Weiner MW, Laxer KD (2011) Widespread extrahippocampal NAA/(Cr + Cho) abnormalities in TLE with and without mesial temporal sclerosis. J Neurol 258(4):603–612CrossRefPubMedGoogle Scholar
  63. 63.
    Avdievich NI, Pan JW, Baehring JM, Spencer DD, Hetherington HP (2009) Short echo spectroscopic imaging of the human brain at 7T using transceiver arrays. Magn Reson Med 62:17–25CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Hetherington HP, Avdievich NI, Kuznetsov AM, Pan JW (2010) RF shimming for spectroscopic localization in the human brain at 7T. Magn Reson Med 63(1):9–19PubMedPubMedCentralGoogle Scholar
  65. 65.
    Mueller SG, Laxer K, Barakos J, Cashdollar N, Flenniken D, Vermathen P, Matson G, Weiner M (2005) Metabolic characteristics of cortical malformations causing epilepsy. J Neurol 252(9):1082–1092CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Dansereau CL, Bellec P, Lee K, Pittau F, Gotman J, Grova C (2014) Detection of abnormal resting-state networks in individual patients suffering from focal epilepsy: an initial step toward individual connectivity assessment. Front Neurosci 8:419. doi: 10.3389/fnins.2014.00419 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Hofmann L, Slotboom J, Boesch C, Kreis R (2001) Characterization of the macromolecule baseline in localized 1H-MR spectra of human brain. Magn Reson Med 46(5):855–863CrossRefPubMedGoogle Scholar
  68. 68.
    Hwang JH, Graham GD, Behar KL, Alger JR, Prichard JW, Rothman DL (1996) Short echo time proton magnetic resonance spectroscopic imaging of macromolecule and metabolite signal intensities in the human brain. Magn Reson Med 35(5):633–639CrossRefPubMedGoogle Scholar
  69. 69.
    Gomes WA, Lado FA, de Lanerolle NC, Takahashi K, Pan C, Hetherington HP (2007) Spectroscopic imaging of the pilocarpine model of human epilepsy suggests that early NAA reduction predicts epilepsy. Magn Reson Med 58(2):230–235CrossRefPubMedGoogle Scholar
  70. 70.
    Maudsley AA, Domenig C, Sheriff S (2010) Reproducibility of serial whole-brain MR spectroscopic imaging. NMR Biomed 23:251–256PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of NeurologyUniversity of Pittsburgh School of MedicinePittsburghUSA

Personalised recommendations