Living Labs pp 131-154 | Cite as

Exploring the German Living Lab Research Infrastructure: Opportunities for Sustainable Products and Services

  • Justus von GeiblerEmail author
  • Carolin Baedeker
  • Christa Liedtke
  • Holger Rohn
  • Lorenz Erdmann


Living Labs for Sustainable Development aim to generate low-resource innovations in production-consumption systems by integrating users and actors. This chapter presents the results of a German study investigating potentials of and measures towards the realization of a German Living Lab infrastructure to support actor-integrated sustainability research and innovations in Germany Geibler et al. (2014). Generally, as the status quo analysis revealed, the sustainability and Living Lab communities in Germany are hardly intertwined. However, twelve Living Labs that explicitly consider sustainability aspects could be identified. The analyses of drivers and barriers as well as SWOT (Strengths and Weaknesses, Opportunities and Threats) provided the foundation to identify options for the promotion of a user-integrating research infrastructure supporting sustainable products and services. The measures suggested for Germany include a funding program for actor-integrated, socio-technical research based on a Living Lab network, a communication campaign, and programs to foster networking and the inclusion of SMEs. Some of the suggested measures have already been taken up.


Living lab User integration Innovation Sustainability Resources Resource efficiency Innovation system Research infrastructure 



We are grateful to Moritz Linder, Joanna Behrend, Till Heller, Marco Hasselkuß and Aline Fink for their assistance in formatting and proof reading. We acknowledge the research funding received from the German Ministry of Research and Education for underlying research in two projects: “Nachhaltigkeitsinnovationen im Living Lab” (grant no. 16I1624 and 16I1625) and “INNOLAB – Living Labs in der Green Economy: Realweltliche Innovationsräume für Nutzerintegration und Nachhaltigkeit” (grant no. 01UT1418A-D).


  1. Baedeker, C., Bahn-Walkowiak, B., Bleischwitz, R. Kolberg, S., Mont, O., & Stengel, O., et al. (2008). Survey on Consumption Behavior and Its Driving Forces. European Environment Agency, European Topic Center on Resource and Waste Management: Copenhagen, Denmark.Google Scholar
  2. Baedeker, C., Greiff, K., Grinewitschus, V., Hasselkuß, M., Keyson, D., & Knutsson, J., et al. (2014). Transition through sustainable Product and Service Innovations in Sustainable Living Labs: Application of user-centred research methodology within four Living Labs in Northern Europe. Paper for presentation at the 5th International Sustainable Transitions (IST) Conference, August 27–29, 2014 Utrecht, The Netherlands.Google Scholar
  3. Bringezu, S., van de Sand, I., Schütz, H., Bleischwitz, R., & Moll, S. (2009). Analyzing global resource use of national and regional economies across various levels. In S. Bringezu & R. Bleischwitz (Eds.), Sustainable resource management—Trends, visions and policies (pp. 10–51). Greenleaf Publishing: Sheffield, UK.Google Scholar
  4. Bringezu, S., Schütz, H., Pengue, W., O’Brien, M., Garcia, F., & Sims, R., et al. (2014). Assessing Global Land Use: Balancing Consumption with Sustainable Supply. A Report of the Working Group on Land and Soils of the International Resource Panel. United Nations Environmental Program: Nairobi, Kenya.Google Scholar
  5. Buhl, J., Echternacht, L., & Geibler, J. v. (2015). Rebound-Effekte – Ursachen, Gegenmaßnahmen und Implikationen für die Living Lab-Forschung im Arbeitspaket 1 (AP 1.2a) des INNOLAB Projekts. Wuppertal Institute, Wuppertal.Google Scholar
  6. Druckman, A., Chitnis, M., Sorrell, S., & Jackson, T. (2011). Missing carbon reductions?: Exploring rebound and backfire effects in UK households. Energy Policy, 39, 3572–3581.CrossRefGoogle Scholar
  7. Fischer-Kowalski, M., Swilling, M., von Weizsäcker, E.U., Ren, Y., Moriguchi, Y., & Crane, W., et al. (2011). Decoupling Natural Resource Use and Environmental Impacts from Economic Growth, A Report of the Working Group on Decoupling to the International Resource Panel; United Nations Environment Program: Nairobi, Kenya, p. 2.Google Scholar
  8. Geibler, J. v., Rohn, H., Schnabel, F., Meier, J., Wiesen, K., & Ziema, F., et al. (2011). Ressourceneffizienzatlas. Eine internationale Perspektive auf Technologien und Produkte mit Ressourceneffizienzpotenzial. Retrieved November 4, 2015 from
  9. Geibler, J. v., Erdmann, L., Liedtke, C., Rohn, H., Stabe, M., & Berner, S., et al. (2014). Exploring the potential of a german living lab re-search infrastructure for the development of low resource products and services. Journal Resources, 3, 575–598.Google Scholar
  10. German Federal Ministry of Education and Research (BMBF). (2012). Bundesbericht Forschung und Innovation 2012. Bundesministerium für Bildung und Forschung BMBF: Bonn, Germany.Google Scholar
  11. Jackson, T. (2005). Motivating sustainable consumption: A review of evidence on consumer behavior and behavioral change. London, UK: Policy Studies Institute.Google Scholar
  12. Lettenmeier, M., Rohn, H., Liedtke, C., & Schmidt-Bleek, F. (2009). Resource Productivity in 7 Steps. How to Develop Eco-Innovative Products and Services and Improve their Material Footprint; Wuppertal Special No. 41; Wuppertal Institute for Climate, Environment and Energy: Wuppertal, Germany.Google Scholar
  13. Lettenmeier, M., Liedtke, C., & Rohn, H. (2014). A production- and consumption-oriented reference framework for low resource household consumption—Perspective for sustainable transformation processes of lifestyles. Resources, 3, 488–515.CrossRefGoogle Scholar
  14. Liedtke, C., Welfens, M. J., Rohn, H., & Nordmann, J. (2012). LIVING LAB: User-driven innovation for sustainability. International Journal of Sustainability in Higher Education, 13, 106–118.CrossRefGoogle Scholar
  15. Liedtke, C., Baedeker, C., Hasselkuß, M., Rohn, H., & Grinewitschus, V. (2015). User-integrated innovation in Sustainable LivingLabs: An experimental infrastructure for researching and developing sustainable product service systems. Journal of Cleaner Production, 97, 106–116.CrossRefGoogle Scholar
  16. Lin, I.-H., Chang, O. H., & Chang, C. (2014). Importance of sustainability performance indicators as perceived by the users and preparers. Journal Management and Sustainability, 4, 34–45.CrossRefGoogle Scholar
  17. Münz, R., & Reiterer, A. F. (2009). Overcrowded world? Population explosion and international migration (1st ed., p. 324). London, UK: Haus Publishing.Google Scholar
  18. Pierson, J., & Lievens, B. (2005). Configuring living labs for a “Thick” understanding of innovation. Ethnographic Praxis in Industry Conference Proceedings, 1, 114–127.CrossRefGoogle Scholar
  19. Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin, F. S., Lambin, E. F., & Foley, J. A. (2009). A safe operating space for humanity. Nature, 461(7263), 472–475.CrossRefGoogle Scholar
  20. Rohn, H., Lang-Koetz, C., Pastewski, N., & Lettenmeier, M. (2009). Identifikation von Technologien, Produkten und Strategien mit hohem Ressourceneffizienzpotenzial—Ergebnisse eines kooperativen Auswahlprozesses. Arbeitspapier zu Arbeitspaket 1 des Projekts “Materialeffizienz und Ressourcenschonung” (MaRess). Ressourceneffizienzpaper 1.2.; Wuppertal Institute: Wuppertal, Germany,Google Scholar
  21. Rohn, H., & Leismann K. (2012). Ergebnisse des Arbeitspakets AP 2.1 “Identifizierung von relevanten Anwendungsfeldern für NachhaltigkeitsLivingLabs”, Interner Ergebnisbericht im Projekt “Nachhaltigkeitsinnovationen im Living Lab”. Friedberg, Faktor 10—Institut für nachhaltiges: Wirtschaften.  Google Scholar
  22. Saurat, M., & Ritthoff, M. (2013). Calculating MIPS 2.0. Resources, 2, 581–607.CrossRefGoogle Scholar
  23. Sorrell, S. (2007). The rebound effect: An assessment of the evidence for economy-wideenergy savings from improved energy efficiency. A report produced by the Sussex Energy Group for, UK Energy Research Centre.Google Scholar
  24. Spangenberg, J. H., Femia, H., Hinterberger, F., & Schütz, H. (1999). Material flow-based indicators in environmental accounting. Luxembourg: Office for Official Publications of the European Communities.Google Scholar
  25. Stabe, M., & Schnalzer, K. (2012). Ergebnisse im Projekt „Nachhaltigkeitsinnovationen im Living Lab”; Ergebnisse des Arbeitspaketes AP 1: „Status Quo Analyse zur deutschen Infrastruktur der Innovations- und Laborforschung [Bestandsaufnahme]“, Interner Bericht. Stuttgart: Fraunhofer Institut für Arbeitswirtschaft und Organisation IAO.Google Scholar
  26. SUSLAB (2015). The SUSLAB Project. Retrieved November 1, 2015 from
  27. Talwar, S., Wiek, A., & Robinson, J. (2011). User engagement in sustainability research. Sci. Public Policy, 38, 379–390.CrossRefGoogle Scholar
  28. Welfens, M. J., Liedtke, C., & Nordmann, J. (2010). Sustainable consumption: Between unsustainable reality and people’s willingsness to act. Proceedings of the Knowledge Collaboration and Learning for Sustainable Innovation ERSCP-EMSU Conference, Delft, The Netherlands, 25–29 October 2010.Google Scholar
  29. Wiesen, K., Teubler, J., & Rohn, H. (2013). Resource Use of Wind Farms in the German North Sea. The Example of Alpha Ventus and Bard Offshore I. Resources, 2, 504–516.CrossRefGoogle Scholar
  30. Zweck, A., Bachmann, G., Luther, W., & Ploetz, C. (2008). Nanotechnology in Germany: From forecasting to technological assessment to sustainability studies. Journal of Cleaner Production, 16, 977–987.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Justus von Geibler
    • 1
    Email author
  • Carolin Baedeker
    • 1
  • Christa Liedtke
    • 1
  • Holger Rohn
    • 2
  • Lorenz Erdmann
    • 3
  1. 1.Wuppertal Institute for Climate Environment and EnergyWuppertalGermany
  2. 2.Faktor 10—Institut für nachhaltiges Wirtschaften gemeinnützige GmbHFriedbergGermany
  3. 3.Fraunhofer Institute for Systems and Innovation Research ISIKarlsruheGermany

Personalised recommendations