Advertisement

Calling in the Dark: The Role of Volatiles for Communication in the Rhizosphere

  • Nicole M. van DamEmail author
  • Alexander Weinhold
  • Paolina Garbeva
Part of the Signaling and Communication in Plants book series (SIGCOMM)

Abstract

Volatile organic compounds play an important role in the communication between plants and other organisms. The rhizosphere contains a large and diverse microbial community whose members use similar volatiles for intra- and interspecific communication. However, the analysis of volatiles produced in the rhizosphere and their ecological functions have been little explored so far. In this chapter, we outline what is known about the classes of volatiles that are emitted into the rhizosphere by roots and soil microbes, and the effect they have on different interactors in the soil. Additionally, we review current approaches to sample volatiles in mesocosms and field soils. We conclude that to better understand the production and functions of volatiles in the rhizosphere, it is of critical importance to design set-ups that account for the natural complexity of soils. This will help to apply this knowledge for sustainable agriculture and the identification of novel agrochemicals.

Keywords

Endophytic Fungus Plant Volatile Volatile Profile Volatile Emission Root Herbivore 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Agerbirk N, Olsen CE (2012) Glucosinolate structures in evolution. Phytochemistry 77:16–45. doi: 10.1016/j.phytochem.2012.02.005 PubMedCrossRefGoogle Scholar
  2. Ahmad A, Viljoen AM, Chenia HY (2015) The impact of plant volatiles on bacterial quorum sensing. Lett Appl Microbiol 60:8–19. doi: 10.1111/lam.12343 PubMedCrossRefGoogle Scholar
  3. Ali JG, Alborn HT, Stelinski LL (2010) Subterranean herbivore-induced volatiles released by Citrus roots upon feeding by Diaprepes abbreviatus recruit entomopathogenic nematodes. J Chem Ecol 36:361–368. doi: 10.1007/s10886-010-9773-7 PubMedCrossRefGoogle Scholar
  4. Ali JG, Alborn HT, Stelinski LL (2011) Constitutive and induced subterranean plant volatiles attract both entomopathogenic and plant parasitic nematodes. J Ecol 99:26–35. doi: 10.1111/j.1365-2745.2010.01758.x CrossRefGoogle Scholar
  5. Ali JG, Alborn HT, Campos-Herrera R, Kaplan F, Duncan LW, Rodriguez-Saona C, Koppenhoefer AM, Stelinski LL (2012) Subterranean, herbivore-induced plant volatile increases biological control activity of multiple beneficial nematode species in distinct habitats. PLoS One 7. doi: 10.1371/journal.pone.0038146
  6. Ali JG, Campos-Herrera R, Alborn HT, Duncan LW, Stelinski LL (2013) Sending mixed messages: a trophic cascade produced by a belowground herbivore-induced cue. J Chem Ecol 39:1140–1147. doi: 10.1007/s10886-013-0332-x PubMedCrossRefGoogle Scholar
  7. Allmann S, Halitschke R, Schuurink RC, Baldwin IT (2010) Oxylipin channelling in Nicotiana attenuata: lipoxygenase 2 supplies substrates for green leaf volatile production. Plant Cell Environ 33:2028–2040. doi: 10.1111/j.1365-3040.2010.02203.x PubMedCrossRefGoogle Scholar
  8. Attieh J, Kleppinger-Sparace KF, Nunes C, Sparace SA, Saini HS (2000) Evidence implicating a novel thiol methyltransferase in the detoxification of glucosinolate hydrolysis products in Brassica oleracea L. Plant Cell Environ 23:165–174CrossRefGoogle Scholar
  9. Audrain B, Farag MA, Ryu C-M, Ghigo J-M (2015) Role of bacterial volatile compounds in bacterial biology. FEMS Microbiol Rev 39:222–233. doi: 10.1093/femsre/fuu013 PubMedCrossRefGoogle Scholar
  10. Badri DV, Weir TL, van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues: plant–microbe interactions. Curr Opin Biotechnol 20:642–650. doi: 10.1016/j.copbio.2009.09.014 PubMedCrossRefGoogle Scholar
  11. Bailly A, Groenhagen U, Schulz S, Geisler M, Eberl L, Weisskopf L (2014) The inter-kingdom volatile signal indole promotes root development by interfering with auxin signalling. Plant J 80:758–771. doi: 10.1111/tpj.12666 PubMedCrossRefGoogle Scholar
  12. Bakker PAHM, Berendsen RL, Doornbos RF, Wintermans PCA, Pieterse CMJ (2013) The rhizosphere revisited: root microbiomics. Front Plant Sci 4:7. doi: 10.3389/fpls.2013.00165 CrossRefGoogle Scholar
  13. Barnett K, Johnson SN (2013) Living in the soil matrix: abiotic factors affecting root herbivores. Adv Insect Physiol 45:1–52. doi: 10.1016/b978-0-12-417165-7.00001-5 CrossRefGoogle Scholar
  14. Barto EK, Hilker M, Muller F, Mohney BK, Weidenhamer JD, Rillig MC (2011) The fungal fast lane: common mycorrhizal networks extend bioactive zones of allelochemicals in soils. PLoS One 6:7. doi: 10.1371/journal.pone.0027195 CrossRefGoogle Scholar
  15. Belhassen E, Filippi JJ, Brevard H, Joulain D, Baldovini N (2015) Volatile constituents of vetiver: a review. Flavour Fragance J 30:26–82. doi: 10.1002/ffj.3227 CrossRefGoogle Scholar
  16. Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486. doi: 10.1016/j.tplants.2012.04.001 PubMedCrossRefGoogle Scholar
  17. Biedrzycki ML, Bais HP (2010) Kin recognition in plants: a mysterious behaviour unsolved. J Exp Bot 61:4123–4128. doi: 10.1093/jxb/erq250 PubMedCrossRefGoogle Scholar
  18. Blom D, Fabbri C, Connor EC, Schiestl FP, Klauser DR, Boller T, Eberl L, Weisskopf L (2011a) Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environ Microbiol 13:3047–3058. doi: 10.1111/j.1462-2920.2011.02582.x PubMedCrossRefGoogle Scholar
  19. Blom D, Fabbri C, Eberl L, Weisskopf L (2011b) Volatile-mediated killing of Arabidopsis thaliana by bacteria is mainly due to hydrogen cyanide. Appl Environ Microbiol 77:1000–1008. doi: 10.1128/aem.01968-10 PubMedCrossRefGoogle Scholar
  20. Blossey B, Hunt-Joshi TR (2003) Belowground herbivory by insects: influence on plants and aboveground herbivores. Annu Rev Entomol 48:521–547PubMedCrossRefGoogle Scholar
  21. Bones AM, Rossiter JT (2006) The enzymic and chemically induced decomposition of glucosinolates. Phytochemistry 67:1053–1067PubMedCrossRefGoogle Scholar
  22. Bonfante P, Anca IA (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383. doi: 10.1146/annurev.micro.091208.073504 PubMedCrossRefGoogle Scholar
  23. Bonkowski M, Villenave C, Griffiths B (2009) Rhizosphere fauna: the functional and structural diversity of intimate interactions of soil fauna with plant roots. Plant Soil 321:213–233. doi: 10.1007/s11104-009-0013-2 CrossRefGoogle Scholar
  24. Brown PD, Morra MJ (1997) Control of soil-borne plant pests using glucosinolate-containing plants. Adv Agron 61:167–231CrossRefGoogle Scholar
  25. Buee M, De Boer W, Martin F, van Overbeek L, Jurkevitch E (2009) The rhizosphere zoo: an overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. Plant Soil 321:189–212. doi: 10.1007/s11104-009-9991-3 CrossRefGoogle Scholar
  26. Bulgarelli D, Rott M, Schlaeppi K, van Themaat EVL, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J, Gloeckner FO, Amann R, Eickhorst T, Schulze-Lefert P (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95. doi: 10.1038/nature11336 PubMedCrossRefGoogle Scholar
  27. Caboni P, Sarais G, Aissani N, Tocco G, Sasanelli N, Liori B, Carta A, Angioni A (2012) Nematicidal activity of 2-thiophenecarboxaldehyde and methylisothiocyanate from Caper (Capparis spinosa) against Meloidogyne incognita. J Agric Food Chem 60:7345–7351. doi: 10.1021/jf302075w PubMedCrossRefGoogle Scholar
  28. Cane DE, Ikeda H (2012) Exploration and mining of the bacterial terpenome. Acc Chem Res 45:463–472. doi: 10.1021/ar200198d PubMedCrossRefGoogle Scholar
  29. Cankar K, Kraigher H, Ravnikar M, Rupnik M (2005) Bacterial endophytes from seeds of Norway spruce (Picea abies L. Karst). FEMS Microbiol Lett 244:341–345. doi: 10.1016/j.femsle.2005.02.008 PubMedCrossRefGoogle Scholar
  30. Cardoso C, Ruyter-Spira C, Bouwmeester HJ (2011) Strigolactones and root infestation by plant-parasitic Striga, Orobanche and Phelipanche spp. Plant Sci 180:414–420. doi: 10.1016/j.plantsci.2010.11.007 PubMedCrossRefGoogle Scholar
  31. Cecchini C, Coman MM, Cresci A, Tirillini B, Cristalli G, Papa F, Sagratini G, Vittori S, Maggi F (2010) Essential oil from fruits and roots of Ferulago campestris (Besser) Grecescu (Apiaceae): composition and antioxidant and anti-Candida activity. Flavour Fragance J 25:493–502. doi: 10.1002/ffj.2010 CrossRefGoogle Scholar
  32. Chen F, Ro DK, Petri J, Gershenzon J, Bohlmann J, Pichersky E, Tholl D (2004) Characterization of a root-specific Arabidopsis terpene synthase responsible for the formation of the volatile monoterpene 1,8-cineole. Plant Physiol 135:1956–1966. doi: 10.1104/pp.104.044388 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Chernin L, Toklikishvili N, Ovadis M, Kim S, Ben-Ari J, Khmel I, Vainstein A (2011) Quorum-sensing quenching by rhizobacterial volatiles. Environ Microbiol Rep 3:698–704. doi: 10.1111/j.1758-2229.2011.00284.x PubMedCrossRefGoogle Scholar
  34. Chin H-W, Lindsay RC (1994) Mechanisms of formation of volatile sulfur compounds following the action of cysteine sulfoxide lyases. J Agric Food Chem 42:1529–1536. doi: 10.1021/jf00043a026 CrossRefGoogle Scholar
  35. Chou WKW, Ikeda H, Cane DE (2011) Cloning and characterization of Pfl_1841, a 2-methylenebornane synthase in Pseudomonas fluorescens PfO-1. Tetrahedron 67:6627–6632. doi: 10.1016/j.tet.2011.05.084 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Collado IG, Sanchez AJ, Hanson JR (2007) Fungal terpene metabolites: biosynthetic relationships and the control of the phytopathogenic fungus Botrytis cinerea. Nat Prod Rep 24:674–686. doi: 10.1039/b603085h PubMedCrossRefGoogle Scholar
  37. Compant S, Reiter B, Sessitsch A, Nowak J, Clement C, Barka EA (2005) Endophytic colonization of Vitis vinifera L. by plant growth promoting bacterium Burkholderia sp strain PsJN. Appl Environ Microbiol 71:1685–1693. doi: 10.1128/aem.71.4.1685-1693.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  38. Crespo E, Hordijk CA, de Graaf RM, Samudrala D, Cristescu SM, Harren FJM, van Dam NM (2012) On-line detection of root-induced volatiles in Brassica nigra plants infested with Delia radicum L. root fly larvae. Phytochemistry 84:68–77. doi: 10.1016/j.phytochem.2012.08.013 PubMedCrossRefGoogle Scholar
  39. Croes AF, Vandenberg AJR, Bosveld M, Breteler H, Wullems GJ (1989) Thiophene accumulation in relation to morphology in roots of Tagetes patula—effects of auxin and transformation by Agrobacterium. Planta 179:43–50. doi: 10.1007/bf00395769 PubMedCrossRefGoogle Scholar
  40. Danner H, Samudrala D, Cristescu SM, Van Dam NM (2012) Tracing hidden herbivores: time-resolved non-invasive analysis of belowground volatiles by proton-transfer-reaction mass spectrometry (PTR-MS). J Chem Ecol 38:785–794. doi: 10.1007/s10886-012-0129-3 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Danner H, Brown P, Cator E, Harren FM, van Dam N, Cristescu S (2015) Aboveground and belowground herbivores synergistically induce volatile organic sulfur compound emissions from shoots but not from roots. J Chem Ecol 41:631–640. doi: 10.1007/s10886-015-0601-y PubMedPubMedCentralCrossRefGoogle Scholar
  42. Dawood T, Rieu I, Wolters-Arts M, Derksen EB, Mariani C, Visser EJW (2014) Rapid flooding-induced adventitious root development from preformed primordia in Solanum dulcamara. AoB Plants 6:13. doi: 10.1093/aobpla/plt058 CrossRefGoogle Scholar
  43. De Boer JG, Posthumus MA, Dicke M (2004) Identification of volatiles that are used in discrimination between plants infested with prey or nonprey herbivores by a predatory mite. J Chem Ecol 30:2215–2230PubMedCrossRefGoogle Scholar
  44. de Boer W, Kowalchuk GA, van Veen JA (2006) ‘Root-food’ and the rhizosphere microbial community composition. New Phytol 170:3–6. doi: 10.1111/j.1469-8137.2006.01674.x PubMedCrossRefGoogle Scholar
  45. de Deyn GB, Raaijmakers CE, Zoomer HR, Berg MP, De Ruiter PC, Verhoeff HA, Bezemer TM, Van der Putten WH (2003) Soil invertebrate fauna enhances grassland succession and diversity. Nature 422:711–713PubMedCrossRefGoogle Scholar
  46. De Vos M, Van Oosten VR, Van Poecke RMP, Van Pelt JA, Pozo MJ, Mueller MJ, Buchala AJ, Metraux JP, Van Loon LC, Dicke M, Pieterse CMJ (2005) Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant Microbe Interact 18:923–937PubMedCrossRefGoogle Scholar
  47. Degenhardt J, Hiltpold I, Kollner TG, Frey M, Gierl A, Gershenzon J, Hibbard BE, Ellersieck MR, Turlings TCJ (2009) Restoring a maize root signal that attracts insect-killing nematodes to control a major pest. Proc Natl Acad Sci USA 106:13213–13218. doi: 10.1073/pnas.0906365106 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Del Giudice L, Massardo DR, Pontieri P, Bertea CM, Mombello D, Carata E, Tredici SM, Tala A, Mucciarelli M, Groudeva VI, De Stefano M, Vigliotta G, Maffei ME, Alifano P (2008) The microbial community of Vetiver root and its involvement into essential oil biogenesis. Environ Microbiol 10:2824–2841. doi: 10.1111/j.1462-2920.2008.01703.x PubMedCrossRefGoogle Scholar
  49. Depuydt S (2014) Arguments for and against self and non-self root recognition in plants. Front Plant Sci 5:7. doi: 10.3389/fpls.2014.00614 CrossRefGoogle Scholar
  50. Dicke M, Baldwin IT (2010) The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends Plant Sci 15:167–175. doi: 10.1016/j.tplants.2009.12.002 PubMedCrossRefGoogle Scholar
  51. Dicke M, Sabelis MW (1988) Infochemical terminology: based on cost–benefit analysis rather than origin of compounds? Funct Ecol 2:131–139CrossRefGoogle Scholar
  52. Dickschat JS, Pahirulzaman KA, Rabe P, Klapschinski TA (2014) An improved technique for the rapid chemical characterisation of bacterial terpene cyclases. Chembiochem 15:810–814. doi: 10.1002/cbic.201300763 PubMedCrossRefGoogle Scholar
  53. Döring TF (2014) How aphids find their host plants, and how they don’t. Ann Appl Biol 165:3–26. doi: 10.1111/aab.12142 CrossRefGoogle Scholar
  54. Driouich A, Follet-Gueye ML, Vicre-Gibouin M, Hawes M (2013) Root border cells and secretions as critical elements in plant host defense. Curr Opin Plant Biol 16:489–495. doi: 10.1016/j.pbi.2013.06.010 PubMedCrossRefGoogle Scholar
  55. Dudareva N, Pichersky E, Gershenzon J (2004) Biochemistry of plant volatiles. Plant Physiol 135:1893–1902PubMedPubMedCentralCrossRefGoogle Scholar
  56. Ebel R (2010) Terpenes from marine-derived fungi. Mar Drugs 8:2340–2368. doi: 10.3390/md8082340 PubMedPubMedCentralCrossRefGoogle Scholar
  57. Effmert U, Kalderas J, Warnke R, Piechulla B (2012) Volatile mediated interactions between bacteria and fungi in the soil. J Chem Ecol 38:665–703. doi: 10.1007/s10886-012-0135-5 PubMedCrossRefGoogle Scholar
  58. Eilers EJ, Pauls G, Rillig MC, Hansson BS, Hilker M, Reinecke A (2015) Novel set-up for low-disturbance sampling of volatile and non-volatile compounds from plant roots. J Chem Ecol. doi: 10.1007/s10886-015-0559-9 PubMedPubMedCentralGoogle Scholar
  59. Erb M, Huber M, Robert CAM, Ferrieri AP, Machado RAR, Arce CCM (2013) The role of plant primary and secondary metabolites in root-herbivore behaviour, nutrition and physiology. In: Johnson SN, Hiltpold I, Turlings TCJ (eds) Behaviour and physiology of root herbivores, vol 45, 1st edn. Academic Press, Oxford, pp 53–95CrossRefGoogle Scholar
  60. Fantaye CA, Kopke D, Gershenzon J, Degenhardt J (2015) Restoring (E)-beta-caryophyllene production in a non-producing Maize line compromises its resistance against the fungus Colletotrichum graminicola. J Chem Ecol 41:213–223. doi: 10.1007/s10886-015-0556-z PubMedCrossRefGoogle Scholar
  61. Ferry A, Dugravot S, Delattre T, Christides JP, Auger J, Bagneres AG, Poinsot D, Cortesero AM (2007) Identification of a widespread monomolecular odor differentially attractive to several Delia radicum ground-dwelling predators in the field. J Chem Ecol 33:2064–2077. doi: 10.1007/s10886-007-9373-3 PubMedCrossRefGoogle Scholar
  62. Fukami H, Asakura T, Hirano H, Abe K, Shimomura K, Yamakawa T (2002) Salicylic acid carboxyl methyltransferase induced in hairy root cultures of Atropa belladonna after treatment with exogeneously added salicylic acid. Plant Cell Physiol 43:1054–1058. doi: 10.1093/pcp/pcf119 PubMedCrossRefGoogle Scholar
  63. Garbeva P, Hol WHG, Termorshuizen AJ, Kowalchuk GA, de Boer W (2011) Fungistasis and general soil biostasis—a new synthesis. Soil Biol Biochem 43:469–477. doi: 10.1016/j.soilbio.2010.11.020 CrossRefGoogle Scholar
  64. Garbeva P, Hordijk C, Gerards S, de Boer W (2014a) Volatile-mediated interactions between phylogenetically different soil bacteria. Front Microbiol 5:9. doi: 10.3389/fmicb.2014.00289 CrossRefGoogle Scholar
  65. Garbeva P, Hordijk C, Gerards S, de Boer W (2014b) Volatiles produced by the mycophagous soil bacterium Collimonas. FEMS Microbiol Ecol 87:639–649. doi: 10.1111/1574-6941.12252 PubMedCrossRefGoogle Scholar
  66. Gepstein S, Kieber J (2010) Ethylene: the gaseous hormone. In: Taiz L, Zeiger E (eds) Plant physiology, 5th edn. Sinauer Associates, Sunderland, MA, pp 649–672Google Scholar
  67. Gfeller A, Laloux M, Barsics F, Kati DE, Haubruge E, du Jardin P, Verheggen FJ, Lognay G, Wathelet JP, Fauconnier ML (2013) Characterization of volatile organic compounds emitted by barley (Hordeum vulgare L.) roots and their attractiveness to wireworms. J Chem Ecol 39:1129–1139. doi: 10.1007/s10886-013-0302-3 PubMedCrossRefGoogle Scholar
  68. Ghashghaie J, Badeck FW (2014) Opposite carbon isotope discrimination during dark respiration in leaves versus roots—a review. New Phytol 201:751–769. doi: 10.1111/nph.12563 PubMedCrossRefGoogle Scholar
  69. Graner G, Persson P, Meijer J, Alstrom S (2003) A study on microbial diversity in different cultivars of Brassica napus in relation to its wilt pathogen, Verticillium longisporum. FEMS Microbiol Lett 224:269–276. doi: 10.1016/s0378-1097(03)00449-x PubMedCrossRefGoogle Scholar
  70. Grebner W, Stingl NE, Oenel A, Mueller MJ, Berger S (2013) Lipoxygenase6-dependent oxylipin synthesis in roots is required for abiotic and biotic stress resistance of Arabidopsis. Plant Physiol 161:2159–2170. doi: 10.1104/pp.113.214544 PubMedPubMedCentralCrossRefGoogle Scholar
  71. Groenhagen U, Maczka M, Dickschat JS, Schulz S (2014) Streptopyridines, volatile pyridine alkaloids produced by Streptomyces sp. FORM5. Beilstein J Org Chem 10:1421–1432. doi: 10.3762/bjoc.10.146 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Gutensohn M, Nagegowda DA, Dudareva N (2013) Involvement of compartimentalisation in monoterpene and sesquipterpene biosynthesis in plants. In: Bach TJ, Rohmer M (eds) Isoprenoid synthesis in plants and microorganisms. New concepts and experimental approaches. Springer, New York, NY, pp 155–169Google Scholar
  73. Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Ann Rev Plant Biol 57:303–333CrossRefGoogle Scholar
  74. Harper M (2000) Sorbent trapping of volatile organic compounds from air. J Chromatogr A 885:129–151. doi: 10.1016/s0021-9673(00)00363-0 PubMedCrossRefGoogle Scholar
  75. Harrison SP, Morfopoulos C, Dani KGS, Prentice IC, Arneth A, Atwell BJ, Barkley MP, Leishman MR, Loreto F, Medlyn BE, Niinemets U, Possell M, Penuelas J, Wright IJ (2013) Volatile isoprenoid emissions from plastid to planet. New Phytol 197:49–57. doi: 10.1111/nph.12021 PubMedCrossRefGoogle Scholar
  76. Hazelwood LA, Daran JM, van Maris AJ, Pronk JT, Dickinson JR (2008) The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 74:2259–2266. doi: 10.1128/aem.02625-07 PubMedPubMedCentralCrossRefGoogle Scholar
  77. Heil M (2014) Herbivore-induced plant volatiles: targets, perception and unanswered questions. New Phytol 204:297–306. doi: 10.1111/nph.12977 CrossRefGoogle Scholar
  78. Heil M, Land WG (2014) Danger signals—damaged-self recognition across the tree of life. Front Plant Sci 5:16. doi: 10.3389/fpls.2014.00578 CrossRefGoogle Scholar
  79. Hiltpold I, Turlings TCJ (2008) Belowground chemical signaling in maize: when simplicity rhymes with efficiency. J Chem Ecol 34:628–635. doi: 10.1007/s10886-008-9467-6 PubMedCrossRefGoogle Scholar
  80. Hol WHG, Garbeva P, Hordijk C, Hundscheid MPJ, Gunnewiek PJAK, van Agtmaal M, Kuramae EE, de Boer W (2015) Non-random species loss in bacterial communities reduces antifungal volatile production. Ecology 96:2042–2048. doi: 10.1890/14-2359.1 PubMedCrossRefGoogle Scholar
  81. Hopkins RJ, van Dam NM, van Loon JJA (2009) Role of glucosinolates in insect–plant relationships and multitrophic interactions. Annu Rev Entomol 54:57–83. doi: 10.1146/annurev.ento.54.110807.090623 PubMedCrossRefGoogle Scholar
  82. Hora TS, Baker R (1970) Volatile factors in soil fungistasis. Nature 225:1071–1072. doi: 10.1038/2251071a0 PubMedCrossRefGoogle Scholar
  83. Hora TS, Baker R (1972) Influence of volatile inhibitor from soil on seed germination. Phytopathol 62:765–765CrossRefGoogle Scholar
  84. Huang CJ, Tsay JF, Chang SY, Yang HP, Wu WS, Chen CY (2012) Dimethyl disulfide is an induced systemic resistance elicitor produced by Bacillus cereus C1L. Pest Manag Sci 68:1306–1310. doi: 10.1002/ps.3301 PubMedCrossRefGoogle Scholar
  85. Hung R, Lee S, Bennett JW (2013) Arabidopsis thaliana as a model system for testing the effect of Trichoderma volatile organic compounds. Fungal Ecol 6:19–26. doi: 10.1016/j.funeco.2012.09.005 CrossRefGoogle Scholar
  86. Inderjit, Wardle DA, Karban R, Callaway RM (2011) The ecosystem and evolutionary contexts of allelopathy. Trends Ecol Evol 26:655–662. doi: 10.1016/j.tree.2011.08.003 PubMedCrossRefGoogle Scholar
  87. Jacobs JJMR, Engelberts A, Croes AF, Wullems GJ (1994) Thiophene synthesis and distribution in young developing plants of Tagetes patula and Tagetes erecta. J Exp Bot 45:1459–1466. doi: 10.1093/jxb/45.10.1459 CrossRefGoogle Scholar
  88. Jallow MFA, Dugassa-Gobena D, Vidal S (2008) Influence of an endophytic fungus on host plant selection by a polyphagous moth via volatile spectrum changes. Arthropod Plant Interact 2:53–62. doi: 10.1007/s11829-008-9033-8 CrossRefGoogle Scholar
  89. Jassbi AR, Zamanizadehnajari S, Baldwin IT (2010) Phytotoxic volatiles in the roots and shoots of Artemisia tridentata as detected by headspace solid-phase microextraction and gas chromatographic-mass spectrometry analysis. J Chem Ecol 36:1398–1407. doi: 10.1007/s10886-010-9885-0 PubMedCrossRefGoogle Scholar
  90. Jenni S, Leibundgut M, Boehringer D, Frick C, Mikolasek B, Ban N (2007) Structure of fungal fatty acid synthase and implications for iterative substrate shuttling. Science 316:254–261. doi: 10.1126/science.1138248 PubMedCrossRefGoogle Scholar
  91. Johnson SN, Nielsen UN (2012) Foraging in the dark—chemically mediated host plant location by belowground insect herbivores. J Chem Ecol 38:604–614. doi: 10.1007/s10886-012-0106-x PubMedCrossRefGoogle Scholar
  92. Johnson SN, Rasmann S (2015) Root-feeding insects and their interactions with organisms in the rhizosphere. Annu Rev Entomol 60:517–535. doi: 10.1146/annurev-ento-010814-020608 PubMedCrossRefGoogle Scholar
  93. Johnston-Monje D, Raizada MN (2011) Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and coology. PLoS One 6. doi: 10.1371/journal.pone.0020396
  94. Kai M, Effmert U, Berg G, Piechulla B (2007) Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Arch Microbiol 187:351–360. doi: 10.1007/s00203-006-0199-0 PubMedCrossRefGoogle Scholar
  95. Kai M, Vespermann A, Piechulla B (2008) The growth of fungi and Arabidopsis thaliana is influenced by bacterial volatiles. Plant Signal Behav 3:482–484PubMedPubMedCentralCrossRefGoogle Scholar
  96. Kai M, Crespo E, Cristescu SM, Harren FJM, Francke W, Piechulla B (2010) Serratia odorifera: analysis of volatile emission and biological impact of volatile compounds on Arabidopsis thaliana. Appl Microbiol Biotechnol 88:965–976. doi: 10.1007/s00253-010-2810-1 PubMedCrossRefGoogle Scholar
  97. Karban R, Baldwin IT (1997) Induced responses to herbivory. University of Chicago Press, Chicago, ILCrossRefGoogle Scholar
  98. Karban R, Wetzel WC, Shiojiri K, Ishizaki S, Ramirez SR, Blande JD (2014a) Deciphering the language of plant communication: volatile chemotypes of sagebrush. New Phytol 204:380–385. doi: 10.1111/nph.12887 PubMedCrossRefGoogle Scholar
  99. Karban R, Yang LH, Edwards KF (2014b) Volatile communication between plants that affects herbivory: a meta-analysis. Ecol Lett 17:44–52. doi: 10.1111/ele.12205 PubMedCrossRefGoogle Scholar
  100. Kegge W, Ninkovic V, Glinwood R, Welschen RAM, Voesenek L, Pierik R (2015) Red:far-red light conditions affect the emission of volatile organic compounds from barley (Hordeum vulgare), leading to altered biomass allocation in neighbouring plants. Ann Bot 115:961–970. doi: 10.1093/aob/mcv036 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Kim T-Y, Lee S-W, Oh M-K (2014) Biosynthesis of 2-phenylethanol from glucose with genetically engineered Kluyveromyces marxianus. Enzyme Microb Technol 61–62:44–47. doi: 10.1016/j.enzmictec.2014.04.011 PubMedCrossRefGoogle Scholar
  102. Kissen R, Rossiter JT, Bones AM (2009) The ‘mustard oil bomb’: not so easy to assemble?! Localization, expression and distribution of the components of the myrosinase enzyme system. Phytochem Rev 8:69–86CrossRefGoogle Scholar
  103. Kleinheinz GT, Bagley ST, St John WP, Rughani JR, McGinnis GD (1999) Characterization of alpha-pinene-degrading microorganisms and application to a bench-scale biofiltration system for VOC degradation. Arch Environ Contam Toxicol 37:151–157PubMedCrossRefGoogle Scholar
  104. Korpi A, Jarnberg J, Pasanen AL (2009) Microbial volatile organic compounds. Crit Rev Toxicol 39:139–193. doi: 10.1080/10408440802291497 PubMedCrossRefGoogle Scholar
  105. Kostal V (1992) Orientation behavior of newly hatched larvae of the cabbage maggot, Delia radicum (L.) (Diptera, Anthomyiidae) to volatile plant metabolites. J Insect Behav 5:61–70CrossRefGoogle Scholar
  106. Kpoviessi DSS, Gbaguidi FA, Kossouoh C, Agbani P, Yayi-Ladekan E, Sinsin B, Moudachirou M, Accrombessi GC, Quetin-Leclercq J (2011) Chemical composition and seasonal variation of essential oil of Sclerocarya birrea (A. Rich.) Hochst subsp birrea leaves from Benin. J Med Plants 5:4640–4646Google Scholar
  107. Kulmatiski A, Anderson-Smith A, Beard KH, Doucette-Riise S, Mazzacavallo M, Nolan NE, Ramirez RA, Stevens JR (2014) Most soil trophic guilds increase plant growth: a meta-analytical review. Oikos 123:1409–1419. doi: 10.1111/oik.01767 CrossRefGoogle Scholar
  108. Kwon YS, Ryu CM, Lee S, Park HB, Han KS, Lee JH, Lee K, Chung WS, Jeong MJ, Kim HK, Bae DW (2010) Proteome analysis of Arabidopsis seedlings exposed to bacterial volatiles. Planta 232:1355–1370. doi: 10.1007/s00425-010-1259-x PubMedCrossRefGoogle Scholar
  109. Lauchli R, Pitzer J, Kitto RZ, Kalbarczyk KZ, Rabe KS (2014) Improved selectivity of an engineered multi-product terpene synthase. Org Biomol Chem 12:4013–4020. doi: 10.1039/C4ob00479e PubMedCrossRefGoogle Scholar
  110. Lee S, Hung R, Yap M, Bennett JW (2015) Age matters: the effects of volatile organic compounds emitted by Trichoderma atroviride on plant growth. Arch Microbiol 197:723–727. doi: 10.1007/s00203-015-1104-5 PubMedCrossRefGoogle Scholar
  111. Leger C, Riga E (2009) Evaluation of marigolds and entomopathogenic nematodes for control of the cabbage maggot Delia radicum. J Sustain Agric 33:128–141. doi: 10.1080/10440040802394992 CrossRefGoogle Scholar
  112. Loreto F, Schnitzler JP (2010) Abiotic stresses and induced BVOCs. Trends Plant Sci 15:154–166. doi: 10.1016/j.tplants.2009.12.006 PubMedCrossRefGoogle Scholar
  113. Lugtenberg BJJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490. doi: 10.1146/annurev.phyto.39.1.461 PubMedCrossRefGoogle Scholar
  114. Meldau DG, Meldau S, Hoang LH, Underberg S, Wunsche H, Baldwin IT (2013) Dimethyl disulfide produced by the naturally associated bacterium Bacillus sp B55 promotes Nicotiana attenuata growth by enhancing sulfur nutrition. Plant Cell 25:2731–2747. doi: 10.1105/tpc.113.114744 PubMedPubMedCentralCrossRefGoogle Scholar
  115. Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663. doi: 10.1111/1574-6976.12028 PubMedCrossRefGoogle Scholar
  116. Minerdi D, Moretti M, Gilardi G, Barberio C, Gullino ML, Garibaldi A (2008) Bacterial ectosymbionts and virulence silencing in a Fusarium oxysporum strain. Environ Microbiol 10:1725–1741. doi: 10.1111/j.1462-2920.2008.01594.x PubMedCrossRefGoogle Scholar
  117. Mohney BK, Matz T, LaMoreaux J, Wilcox DS, Gimsing AL, Mayer P, Weidenhamer JD (2009) In situ silicone tube microextraction: a new method for undisturbed sampling of root-exuded thiophenes from Marigold (Tagetes erecta L.) in soil. J Chem Ecol 35:1279–1287. doi: 10.1007/s10886-009-9711-8 PubMedCrossRefGoogle Scholar
  118. Morant AV, Jørgensen K, Jørgensen C, Paquette SM, Sánchez-Pérez R, Møller BL, Bak S (2008) ß-glucosidases as detonators of plant chemical defense. Phytochemistry 69:1795–1813PubMedCrossRefGoogle Scholar
  119. Mumm R, Hilker M (2005) The significance of background odour for an egg parasitoid to detect plants with host eggs. Chem Senses 30:337–343PubMedCrossRefGoogle Scholar
  120. Mundt JO, Hinkle NF (1976) Bacteria within ovules and seeds. Appl Environ Microbiol 32:694–698PubMedPubMedCentralGoogle Scholar
  121. Naeem S (1998) Species redundancy and ecosystem reliability. Conserv Biol 12:39–45. doi: 10.1111/j.1523-1739.1998.96379.x CrossRefGoogle Scholar
  122. Nelson EB (2004) Microbial dynamics and interactions in the spermosphere. Annu Rev Phytopathol 42:271–309. doi: 10.1146/annurev.phyto.42.121603.131041 PubMedCrossRefGoogle Scholar
  123. Njoroge SMC, Riley MB, Keinath AP (2008) Effect of incorporation of Brassica spp. residues on population densities of soilborne microorganisms and on damping-off and Fusarium wilt of watermelon. Plant Dis 92:287–294. doi: 10.1094/pdis-92-2-0287 CrossRefGoogle Scholar
  124. Owen SM, Clark S, Pompe M, Semple KT (2007) Biogenic volatile organic compounds as potential carbon sources for microbial communities in soil from the rhizosphere of Populus tremula. FEMS Microbiol Lett 268:34–39. doi: 10.1111/j.1574-6968.2006.00602.x PubMedCrossRefGoogle Scholar
  125. Paul D, Park KS (2013) Identification of volatiles produced by Cladosporium cladosporioides CL-1, a fungal biocontrol agent that promotes plant growth. Sensors 13:13969–13977. doi: 10.3390/s131013969 PubMedPubMedCentralCrossRefGoogle Scholar
  126. Peng M, Xie Q, Hu H, Hong K, Todd JD, Johnston AW, Li Y (2012) Phylogenetic diversity of the dddP gene for dimethylsulfoniopropionate-dependent dimethyl sulfide synthesis in mangrove soils. Can J Microbiol 58:523–530. doi: 10.1139/w2012-019 PubMedCrossRefGoogle Scholar
  127. Peñuelas J, Munne-Bosch S (2005) Isoprenoids: an evolutionary pool for photoprotection. Trends Plant Sci 10:166–169PubMedCrossRefGoogle Scholar
  128. Peñuelas J, Asensio D, Tholl D, Wenke K, Rosenkranz M, Piechulla B, Schnitzler JP (2014a) Biogenic volatile emissions from the soil. Plant Cell Environ 37:1866–1891. doi: 10.1111/pce.12340 PubMedCrossRefGoogle Scholar
  129. Peñuelas J, Farré-Armengol G, Llusia J, Gargallo-Garriga A, Rico L, Sardans J, Terradas J, Filella I (2014b) Removal of floral microbiota reduces floral terpene emissions. Sci Rep 4:4. doi: 10.1038/srep06727 CrossRefGoogle Scholar
  130. Pierik R, Tholen D, Poorter H, Visser EJW, Voesenek L (2006) The Janus face of ethylene: growth inhibition and stimulation. Trends Plant Sci 11:176–183. doi: 10.1016/j.tplants.2006.02.006 PubMedCrossRefGoogle Scholar
  131. Potter MJ, Davies K, Rathjen AJ (1998) Suppressive impact of glucosinolates in Brassica vegetative tissues on root lesion nematode Pratylenchus neglectus. J Chem Ecol 24:67–80CrossRefGoogle Scholar
  132. Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moenne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361. doi: 10.1007/s11104-008-9568-6 CrossRefGoogle Scholar
  133. Rasmann S, Turlings TCJ (2008) First insights into specificity of belowground tritrophic interactions. Oikos 117:362–369. doi: 10.1111/j.2007.0030-1299.16204.x CrossRefGoogle Scholar
  134. Rasmann S, Kollner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Gershenzon J, Turlings TCJ (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737. doi: 10.1038/nature03451 PubMedCrossRefGoogle Scholar
  135. Rasmann S, Erwin AC, Halitschke R, Agrawal AA (2011) Direct and indirect root defences of milkweed (Asclepias syriaca): trophic cascades, trade-offs and novel methods for studying subterranean herbivory. J Ecol 99:16–25. doi: 10.1111/j.1365-2745.2010.01713.x CrossRefGoogle Scholar
  136. Richter A, Seidl-Adams I, Kollner TG, Schaff C, Tumlinson JH, Degenhardt J (2015) A small, differentially regulated family of farnesyl diphosphate synthases in maize (Zea mays) provides farnesyl diphosphate for the biosynthesis of herbivore-induced sesquiterpenes. Planta 241:1351–1361. doi: 10.1007/s00425-015-2254-z PubMedCrossRefGoogle Scholar
  137. Robert CAM, Erb M, Duployer M, Zwahlen C, Doyen GR, Turlings TCJ (2012) Herbivore-induced plant volatiles mediate host selection by a root herbivore. New Phytol 194:1061–1069. doi: 10.1111/j.1469-8137.2012.04127.x PubMedCrossRefGoogle Scholar
  138. Rostás M, Cripps MG, Silcock P (2015) Aboveground endophyte affects root volatile emission and host plant selection of a belowground insect. Oecologia 177:487–497. doi: 10.1007/s00442-014-3104-6 PubMedCrossRefGoogle Scholar
  139. Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Pare PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA 100:4927–4932. doi: 10.1073/pnas.0730845100 PubMedPubMedCentralCrossRefGoogle Scholar
  140. Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Pare PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026. doi: 10.1104/pp.103.026583 PubMedPubMedCentralCrossRefGoogle Scholar
  141. Sacchetti G, Romagnoli C, Bruni A, Poli F (2001) Secretory tissue ultrastructure in Tagetes patula L. (Asteraceae) and thiophene localization through X-ray microanalysis. Phyton 41:35–47Google Scholar
  142. Samudrala D, Brown PA, Mandon J, Cristescu SM, Harren FJM (2015) Optimization and sensitive detection of sulfur compounds emitted from plants using proton transfer reaction mass spectrometry. Int J Mass Spectrom 386:6–14. doi: 10.1016/j.ijms.2015.05.013 CrossRefGoogle Scholar
  143. Sarwar M, Kirkegaard JA, Wong PTW, Desmarchelier JM (1998) Biofumigation potential of brassicas—III. In vitro toxicity of isothiocyanates to soil-borne fungal pathogens. Plant Soil 201:103–112CrossRefGoogle Scholar
  144. Schmid C, Bauer S, Muller B, Bartelheimer M (2013) Belowground neighbor perception in Arabidopsis thaliana studied by transcriptome analysis: roots of Hieracium pilosella cause biotic stress. Front Plant Sci 4:17. doi: 10.3389/fpls.2013.00296 CrossRefGoogle Scholar
  145. Schrey SD, Schellhammer M, Ecke M, Hampp R, Tarkka MT (2005) Mycorrhiza helper bacterium Streptomyces AcH 505 induces differential gene expression in the ectomycorrhizal fungus Amanita muscaria. New Phytol 168:205–216. doi: 10.1111/j.1469-8137.2005.01518.x PubMedCrossRefGoogle Scholar
  146. Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24:814–842. doi: 10.1039/b507392h PubMedCrossRefGoogle Scholar
  147. Schulz-Bohm K, Zweers H, de Boer W, Garbeva P (2015) A fragrant neighborhood: volatile mediated bacterial interactions in soil. Front Microbiol. doi: 10.3389/fmicb.2015.01212 PubMedPubMedCentralGoogle Scholar
  148. Semchenko M, Saar S, Lepik A (2014) Plant root exudates mediate neighbour recognition and trigger complex behavioural changes. New Phytol 204:631–637. doi: 10.1111/nph.12930 PubMedCrossRefGoogle Scholar
  149. Singh SK, Strobel GA, Knighton B, Geary B, Sears J, Ezra D (2011) An endophytic Phomopsis sp. possessing bioactivity and fuel potential with its volatile organic compounds. Microb Ecol 61:729–739. doi: 10.1007/s00248-011-9818-7 PubMedCrossRefGoogle Scholar
  150. Son SH, Khan Z, Kim SG, Kim YH (2009) Plant growth-promoting rhizobacteria, Paenibacillus polymyxa and Paenibacillus lentimorbus suppress disease complex caused by root-knot nematode and fusarium wilt fungus. J Appl Microbiol 107:524–532. doi: 10.1111/j.1365-2672.2009.04238.x PubMedCrossRefGoogle Scholar
  151. Song C, Schmidt RL, de Jager VCL, Krzyzanowska D, Jongedijk E, Cankar K, Beekwilder J, van Veen A, de Boer W, van Veen JA, Garbeva P (2015) Exploring the genomic traits of fungusfeeding bacterial genus Collimonas. BMC Genomics 16(1103). doi: 10.1186/s12864-015-2289-3
  152. Splivallo R, Ottonello S, Mello A, Karlovsky P (2011) Truffle volatiles: from chemical ecology to aroma biosynthesis. New Phytol 189:688–699. doi: 10.1111/j.1469-8137.2010.03523.x PubMedCrossRefGoogle Scholar
  153. Steeghs M, Bais HP, de Gouw J, Goldan P, Kuster W, Northway M, Fall R, Vivanco JM (2004) Proton-transfer-reaction mass spectrometry as a new tool for real time analysis of root-secreted volatile organic compounds in Arabidopsis. Plant Physiol 135:47–58. doi: 10.1104/pp.104.038703 PubMedPubMedCentralCrossRefGoogle Scholar
  154. Stewart-Jones A, Poppy GM (2006) Comparison of glass vessels and plastic bags for enclosing living plant parts for headspace analysis. J Chem Ecol 32:845–864PubMedCrossRefGoogle Scholar
  155. Strobel GA, Dirkse E, Sears J, Markworth C (2001) Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology 147:2943–2950PubMedCrossRefGoogle Scholar
  156. Strobel G, Singh SK, Riyaz-Ul-Hassan S, Mitchell AM, Geary B, Sears J (2011) An endophytic/pathogenic Phoma sp from creosote bush producing biologically active volatile compounds having fuel potential. FEMS Microbiol Lett 320:87–94. doi: 10.1111/j.1574-6968.2011.02297.x PubMedCrossRefGoogle Scholar
  157. Tang CS, Wat CK, Towers GHN (1987) Thiophenes and benzofurans in the undisturbed rhizosphere of Tagetes patula L. Plant Soil 98:93–97. doi: 10.1007/bf02381730 CrossRefGoogle Scholar
  158. Teplitski M, Robinson JB, Bauer WD (2000) Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol Plant Microbe Interact 13:637–648. doi: 10.1094/mpmi.2000.13.6.637 PubMedCrossRefGoogle Scholar
  159. Tholl D (2006) Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr Opin Plant Biol 9:297–304. doi: 10.1016/j.pbi.2006.03.014 PubMedCrossRefGoogle Scholar
  160. Todd JD, Rogers R, Li YG, Wexler M, Bond PL, Sun L, Curson AR, Malin G, Steinke M, Johnston AW (2007) Structural and regulatory genes required to make the gas dimethyl sulfide in bacteria. Science 315:666–669. doi: 10.1126/science.1135370 PubMedCrossRefGoogle Scholar
  161. Todd JD, Curson AR, Kirkwood M, Sullivan MJ, Green RT, Johnston AW (2011) DddQ, a novel, cupin-containing, dimethylsulfoniopropionate lyase in marine roseobacters and in uncultured marine bacteria. Environ Microbiol 13:427–438. doi: 10.1111/j.1462-2920.2010.02348.x PubMedCrossRefGoogle Scholar
  162. Todd JD, Kirkwood M, Newton-Payne S, Johnston AW (2012) DddW, a third DMSP lyase in a model Roseobacter marine bacterium, Ruegeria pomeroyi DSS-3. ISME J 6:223–226. doi: 10.1038/ismej.2011.79 PubMedCrossRefGoogle Scholar
  163. Traxler MF, Watrous JD, Alexandrov T, Dorrestein PC, Kolter R (2013) Interspecies interactions stimulate diversification of the Streptomyces coelicolor secreted metabolome. MBio 4. doi: 10.1128/mBio.00459-13
  164. Tyc O, van den Berg M, Gerards S, van Veen JA, Raaijmakers JM, de Boer W, Garbeva P (2014) Impact of interspecific interactions on antimicrobial activity among soil bacteria. Front Microbiol 5. doi: 10.3389/fmicb.2014.00567
  165. van Dam NM (2009) Belowground herbivory and plant defenses. Annu Rev Ecol Evol Syst 40:373–392CrossRefGoogle Scholar
  166. van Dam NM, Tytgat TOG, Kirkegaard JA (2009) Root and shoot glucosinolates: a comparison of their diversity, function and interactions in natural and managed ecosystems. Phytochem Rev 8:171–186CrossRefGoogle Scholar
  167. van Dam NM, Qiu BL, Hordijk CA, Vet LEM, Jansen JJ (2010) Identification of biologically relevant compounds in aboveground and belowground induced volatile blends. J Chem Ecol 36:1006–1016. doi: 10.1007/s10886-010-9844-9 PubMedPubMedCentralCrossRefGoogle Scholar
  168. van Dam NM, Samudrala D, Harren FJM, Cristescu SM (2012) Real-time analysis of sulfur-containing volatiles in Brassica plants infested with root-feeding Delia radicum larvae using proton-transfer reaction mass spectrometry. AoB Plants. doi: 10.1093/aobpla/pls1021 PubMedPubMedCentralGoogle Scholar
  169. van der Heijden MGA, Martin FM, Selosse MA, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423. doi: 10.1111/nph.13288 PubMedCrossRefGoogle Scholar
  170. van Tol RHWM, van der Sommen ATC, Boff MIC, van Bezooijen J, Sabelis MW, Smits PH (2001) Plants protect their roots by alerting the enemies of grubs. Ecol Lett 4:292–294. doi: 10.1046/j.1461-0248.2001.00227.x CrossRefGoogle Scholar
  171. Vaughan MM, Wang Q, Webster FX, Kiemle D, Hong YJ, Tantillo DJ, Coates RM, Wray AT, Askew W, O’Donnell C, Tokuhisa JG, Tholl D (2013) Formation of the unusual semivolatile diterpene rhizathalene by the Arabidopsis class I terpene synthase TPS08 in the root stele is involved in defense against belowground herbivory. Plant Cell 25:1108–1125. doi: 10.1105/tpc.112.100057 PubMedPubMedCentralCrossRefGoogle Scholar
  172. Vaughn SF, Boydston RA (1997) Volatile allelochemicals released by crucifer green manures. J Chem Ecol 23:2107–2116CrossRefGoogle Scholar
  173. Vespermann A, Kai M, Piechulla B (2007) Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana. Appl Environ Microbiol 73:5639–5641. doi: 10.1128/aem.01078-07 PubMedPubMedCentralCrossRefGoogle Scholar
  174. Vet LEM, Wäckers FL, Dicke M (1991) How to hunt for hiding hosts—the reliability-detectability problem in foraging parasitoids. Neth J Zool 41:202–213CrossRefGoogle Scholar
  175. Voisard C, Keel C, Haas D, Defago G (1989) Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 8:351–358PubMedPubMedCentralGoogle Scholar
  176. Weise T, Kai M, Gummesson A, Troeger A, von Reuss S, Piepenborn S, Kosterka F, Sklorz M, Zimmermann R, Francke W, Piechulla B (2012) Volatile organic compounds produced by the phytopathogenic bacterium Xanthomonas campestris pv. vesicatoria 85–10. Beilstein J Org Chem 8:579–596. doi: 10.3762/bjoc.8.65 PubMedPubMedCentralCrossRefGoogle Scholar
  177. Weisskopf L, Heller S, Eberl L (2011) Burkholderia species are major inhabitants of white lupin cluster roots. Appl Environ Microbiol 77:7715–7720. doi: 10.1128/aem.05845-11 PubMedPubMedCentralCrossRefGoogle Scholar
  178. Weissteiner S, Huetteroth W, Kollmann M, Weißbecker B, Romani R, Schachtner J et al (2012) Cockchafer larvae smell host root scents in soil. PLoS One 7(10):e45827. doi: 10.1371/journal.pone.0045827 PubMedPubMedCentralCrossRefGoogle Scholar
  179. Welte C, De Graaf RM, van den Bosch TJM, Op den Camp HJM, van Dam NM, Jetten MJM (2015) Plasmids from the gut microbiome of cabbage root fly larvae encode SaxA that catalyzes the conversion of the plant toxin 2-phenylethyl isothiocyanate. Environ Microbiol 8:1379-90. doi:  10.1111/1462-2920.12997
  180. Wenke K, Kai M, Piechulla B (2010) Belowground volatiles facilitate interactions between plant roots and soil organisms. Planta 231:499–506. doi: 10.1007/s00425-009-1076-2 PubMedCrossRefGoogle Scholar
  181. Wheatley RE (2002) The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie Van Leeuwenhoek Int J Gen Mol Microbiol 81:357–364. doi: 10.1023/a:1020592802234 CrossRefGoogle Scholar
  182. Wiesner J, Reichenberg A, Hintz M, Ortmann R, Schlitzer M, Van Calenbergh S, Borrmann S, Lell B, Kremsner PG, Hutchinson D, Jomaa H (2013) Fosmidomycin as an antimalarial agent. In: Bach TJ, Rohmer M (eds) Isoprenoid synthesis in plants and microorganisms. New concepts and experimental approaches. Springer, New York, NY, pp 119–137Google Scholar
  183. Wittstock U, Kliebenstein DJ, Lambrix V, Reichelt M, Gershenson J (2003) Glucosinolate hydrolysis and its impact on generalist and specialist herbivores. In: Romeo JT (ed) Integrative phytochemistry: from ethnobotany to molecular ecology, vol 37. Pergamon, AmsterdamGoogle Scholar
  184. Yamada Y, Cane DE, Ikeda H (2012) Diversity and analysis of bacterial terpene synthases. Methods Enzymol 515:123–162PubMedCrossRefGoogle Scholar
  185. Yamada Y, Kuzuyama T, Komatsu M, Shin-Ya K, Omura S, Cane DE, Ikeda H (2015) Terpene synthases are widely distributed in bacteria. Proc Natl Acad Sci USA 112:857–862. doi: 10.1073/pnas.1422108112 PubMedCrossRefGoogle Scholar
  186. Yang C, Wang J, Li D (2013) Microextraction techniques for the determination of volatile and semivolatile organic compounds from plants: a review. Anal Chim Acta 799:8–22. doi: 10.1016/j.aca.2013.07.069 PubMedCrossRefGoogle Scholar
  187. Yeo H, Youn K, Kim M, Yun E-Y, Hwang J-S, Jeong W-S, Jun M (2013) Fatty acid composition and volatile constituents of Protaetia brevitarsis larvae. Prev Nutr Food Sci 18:150–156. doi: 10.3746/pnf.2013.18.2.150 PubMedPubMedCentralCrossRefGoogle Scholar
  188. Yoshikuni Y, Martin VJ, Ferrin TE, Keasling JD (2006) Engineering cotton (+)-delta-cadinene synthase to an altered function: germacrene D-4-ol synthase. Chem Biol 13:91–98. doi: 10.1016/j.chembiol.2005.10.016 PubMedCrossRefGoogle Scholar
  189. Zamioudis C, Mastranesti P, Dhonukshe P, Blilou I, Pieterse CMJ (2013) Unraveling root developmental programs initiated by beneficial Pseudomonas spp. bacteria. Plant Physiol 162:304–318. doi: 10.1104/pp.112.212597 PubMedPubMedCentralCrossRefGoogle Scholar
  190. Zhang H, Kim MS, Krishnamachari V, Payton P, Sun Y, Grimson M, Farag MA, Ryu CM, Allen R, Melo IS, Pare PW (2007) Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226:839–851. doi: 10.1007/s00425-007-0530-2 PubMedCrossRefGoogle Scholar
  191. Zhang HM, Sun Y, Xie XT, Kim MS, Dowd SE, Pare PW (2009) A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms. Plant J 58:568–577. doi: 10.1111/j.1365-313X.2009.03803.x PubMedCrossRefGoogle Scholar
  192. Zhao N, Guan J, Forouhar F, Tschaplinski TJ, Cheng ZM, Tong L, Chen F (2009) Two poplar methyl salicylate esterases display comparable biochemical properties but divergent expression patterns. Phytochemistry 70:32–39. doi: 10.1016/j.phytochem.2008.11.014 PubMedCrossRefGoogle Scholar
  193. Zou C-S, Mo M-H, Gu Y-Q, Zhou J-P, Zhang K-Q (2007) Possible contributions of volatile-producing bacteria to soil fungistasis. Soil Biol Biochem 39:2371–2379. doi: 10.1016/j.soilbio.2007.04.009 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Nicole M. van Dam
    • 1
    • 2
    • 3
    Email author
  • Alexander Weinhold
    • 1
    • 2
  • Paolina Garbeva
    • 4
  1. 1.German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-LeipzigLeipzigGermany
  2. 2.Institute of EcologyFriedrich Schiller University JenaJenaGermany
  3. 3.Department of Molecular Interaction Ecology, Institute of Water and Wetland Research (IWWR)Radboud UniversityNijmegenThe Netherlands
  4. 4.Department of Microbial EcologyNetherlands Institute of Ecology (NIOO-KNAW)WageningenThe Netherlands

Personalised recommendations