Skip to main content

Ecological Role of Odour Diversity

  • Chapter
  • First Online:

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

Multitrophic interactions between plants and arthropods of different trophic levels take place in heterogeneous and complex environments, formed primarily by both host and non-host plants. High plant diversity and non-host plants and their interaction with host plants, other trophic levels and abiotic factors may form a diverse odour bouquet that arthropods have to cope with when foraging for food, hosts, prey, conspecifics or mating partners. This chapter focuses on the ecology of the generation of odour diversity and—vice versa—its effect on plants, herbivores and their natural enemies. Future research will need novel experimental approaches to identify the patterns and processes involved in these intricately unique interactions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agrawal AA, Lau JA, Hambäck PA (2006) Community heterogeneity and the evolution of interactions between plants and herbivores. Q Rev Biol 81:349–376

    Article  PubMed  Google Scholar 

  • Alcock J (1987) Leks and hilltopping in insects. J Nat Hist 21:319–328

    Article  Google Scholar 

  • Andow DA (1991) Vegetational diversity and arthropod population response. Annu Rev Entomol 36:561–586

    Article  Google Scholar 

  • Ballare CL (2014) Light regulation of plant defense. Annu Rev Plant Biol 65:335–363

    Article  CAS  PubMed  Google Scholar 

  • Barbosa P, Hines J, Kaplan I, Martinson H, Szczepaniec A, Szendrei Z (2009) Associational resistance and associational susceptibility: having right or wrong neighbors. Annu Rev Ecol Evol Syst 40:1–20

    Article  Google Scholar 

  • Beyaert I, Hilker M (2014) Plant odour plumes as mediators of plant–insect interactions. Biol Rev 89:68–81

    Article  PubMed  Google Scholar 

  • Bezemer TM, Harvey JA, Kamp AFD, Wagenaar R, Gols R, Kostenko O, Fortuna T, Engelkes T, Vet LEM, Van der Putten W (2010) Behaviour of male and female parasitoids in the field: influence of patch size, host density, and habitat complexity. Ecol Entomol 35:341–351

    Article  Google Scholar 

  • Broz AK, Broeckling CD, De la Pena C, Lewis MR, Greene E, Callaway RM, Sumner LW, Vivanco JM (2010) Plant neighbour identity influences plant biochemistry and physiology related to defense. BMC Plant Biol 10:115

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruce TJA, Wadhams LJ, Woodcock CM (2005) Insect host location: a volatile situation. Trends Plant Sci 10:269–274

    Article  CAS  PubMed  Google Scholar 

  • Bukovinszky T, Gols R, Hemerik L, van Lenteren JC, Vet LEM (2007) Time allocation of a parasitoid foraging in heterogeneous vegetation: implications for host–parasitoid interactions. J Anim Ecol 76:845–853

    Article  PubMed  Google Scholar 

  • Byers JA, Zhang Q-H, Birgersson G (2004) Avoidance of nonhost plants by a bark beetle, Pityogenes bidentatus, in a forest of odors. Naturwissenschaften 91:215–219

    Article  CAS  PubMed  Google Scholar 

  • Cai XM, Sun XL, Dong WX, Wang GC, Chen ZM (2014) Herbivore species, infestation time, and herbivore density affect induced volatiles in tea plants. Chemoecology 24:1–14

    Article  CAS  Google Scholar 

  • Courtois EA, Paine CT, Blandinieres PA, Stien D, Bessiere JM, Houel E, Batraloto C, Chave J (2009) Diversity of the volatile organic compounds emitted by 55 species of tropical trees: a survey in French Guiana. J Chem Ecol 35:1349–1362

    Article  CAS  PubMed  Google Scholar 

  • De Marco RJ, Farina WM (2003) Trophallaxis in forager honeybees (Apis mellifera): resource uncertainty enhances begging contacts? J Comp Physiol A 189:125–134

    Google Scholar 

  • Deisig N, Dupuy F, Anton S, Renou M (2014) Responses to pheromones in a complex odor world: sensory processing and behavior. Insects 5:399–422

    Article  PubMed  PubMed Central  Google Scholar 

  • Dicke M, Van Loon JJ, Soler R (2009) Chemical complexity of volatiles from plants induced by multiple attack. Nat Chem Biol 5:317–324

    Article  CAS  PubMed  Google Scholar 

  • Dudareva N, Negre F, Nagegowda DA, Orlova I (2006) Plant volatiles: recent advances and future perspectives. Crit Rev Plant Sci 25:417–440

    Article  CAS  Google Scholar 

  • Farré-Armengol G, Filella I, Llusia J, Peñuelas J (2013) Floral volatile organic compounds: between attraction and deterrence of visitors under global change. Perspect Plant Ecol Evol Syst 15:56–67

    Article  Google Scholar 

  • Fatouros NE, Dicke M, Mumm R, Meiners T, Hilker M (2008) Chemoecology of host foraging behaviour: infochemical-exploiting strategies used by foraging egg parasitoids. Behav Ecol 19:677–689

    Article  Google Scholar 

  • Finch S, Collier RH (2000) Host–plant selection by insects—a theory based on “appropriate/inappropriate landings” by pest insects of cruciferous plants. Entomol Exp Appl 96:91–102

    Article  Google Scholar 

  • Glinwood R, Ahmed E, Qvarfordt E, Ninkovic V, Pettersson J (2009) Airborne interactions between undamaged plants of different cultivars affect insect herbivores and natural enemies. Arthropod Plant Interact 3:215–224

    Article  Google Scholar 

  • Godfray HCJ (1994) Parasitoids: behavioral and evolutionary ecology. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Gohole LS, Overholt WA, Khan ZR, Vet LEM (2003) Role of volatiles emitted by host and non-host plants in the foraging behaviour of Dentichasmias busseolae, a pupal parasitoid of the spotted stemborer Chilo partellus. Entomol Exp Appl 107:1–9

    Article  CAS  Google Scholar 

  • Gohole LS, Overholt WA, Khan ZR, Vet LEM (2005) Close-range host searching behavior of the stemborer parasitoids Cotesia sesamiae and Dentichasmias busseolae: influence of a nonhost plant Melinis minutiflora. J Insect Behav 18:149–169

    Article  Google Scholar 

  • Hadacek F (2002) Secondary metabolites as plant traits: current assessment and future perspectives. Crit Rev Plant Sci 21:273–322

    Article  CAS  Google Scholar 

  • Hambäck PA, Pettersson J, Ericson L (2003) Are associational refuges species-specific? Funct Ecol 17:87–93

    Article  Google Scholar 

  • Heil M, Karban R (2010) Explaining evolution of plant communication by airborne signals. Trends Ecol Evol 25:137–144

    Article  PubMed  Google Scholar 

  • Held DW, Gonsiska P, Potter DA (2003) Evaluating companion planting and non-host masking odors for protecting roses from the Japanese beetle (Coleoptera: Scarabaeidae). J Econ Entomol 96:81–87

    Article  CAS  PubMed  Google Scholar 

  • Hilker M (2014) New synthesis: parallels between biodiversity and chemodiversity. J Chem Ecol 40:225–226

    Article  CAS  PubMed  Google Scholar 

  • Hilker M, McNeil J (2008) Chemical and behavioral ecology in insect parasitoids: how to behave optimally in a complex odorous environment. In: Wajnberg E, Bernstein C, van Alphen J (eds) Behavioral ecology of insect parasitoids. Blackwell Publishing, Oxford, pp 92–112

    Chapter  Google Scholar 

  • Himanen SJ, Blande JD, Klemola T, Pulkkinen J, Heijari J, Holopainen JK (2010) Birch (Betula spp.) leaves adsorb and re-release volatiles specific to neighbouring plants–a mechanism for associational herbivore resistance? New Phytol 186:722–732

    Article  CAS  PubMed  Google Scholar 

  • Holopainen JK, Gershenzon J (2010) Multiple stress factors and the emission of plant VOCs. Trends Plant Sci 15:176–184

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Cardoza YJ, Schmelz EA, Raina R, Engelberth J, Tumlinson JH (2003) Differential volatile emissions and salicylic acid levels from tobacco plants in response to different strains of Pseudomonas syringae. Planta 217:767–775

    Article  CAS  PubMed  Google Scholar 

  • Iason GR, Lennon JJ, Pakeman RJ, Thoss V, Beaton JK, Sim DA, Elston DA (2005) Does chemical composition of individual Scots pine trees determine the biodiversity of their associated ground vegetation? Ecol Lett 8:364–369

    Article  Google Scholar 

  • Jallow MF, Dugassa-Gobena D, Vidal S (2008) Influence of an endophytic fungus on host plant selection by a polyphagous moth via volatile spectrum changes. Arthropod Plant Interact 2:53–62

    Article  Google Scholar 

  • Johnson CB, Kazantzis A, Skoula M, Mitteregger U, Novak J (2004) Seasonal, populational and ontogenic variation in the volatile oil content and composition of individuals of Origanum vulgare subsp. hirtum, assessed by GC headspace analysis and by SPME sampling of individual oil glands. Phytochem Anal 15:286–292

    Article  CAS  PubMed  Google Scholar 

  • Kegge W, Pierik R (2010) Biogenic volatile organic compounds and plant competition. Trends Plant Sci 15:126–132

    Article  CAS  PubMed  Google Scholar 

  • Khan ZR, Pickett JA, Berg JVD, Wadhams LJ, Woodcock CM (2000) Exploiting chemical ecology and species diversity: stem borer and striga control for maize and sorghum in Africa. Pest Manag Sci 56:957–962

    Article  CAS  Google Scholar 

  • Kigathi RN, Weisser WW, Veit D, Gershenzon J, Unsicker SB (2013) Plants suppress their emission of volatiles when growing with conspecifics. J Chem Ecol 39:537–545

    Article  CAS  PubMed  Google Scholar 

  • Knudsen JT, Eriksson R, Gershenzon J, Stahl B (2006) Diversity and distribution of floral scent. Bot Rev 72:1–120

    Article  Google Scholar 

  • Kos M, Bukovinszky T, Mulder PP, Bezemer TM (2015) Disentangling above-and belowground neighbor effects on the growth, chemistry, and arthropod community on a focal plant. Ecology 96:164–175

    Article  PubMed  Google Scholar 

  • Lucas-Barbosa D, van Loon JJA, Dicke M (2011) The effects of herbivore-induced plant volatiles on interactions between plants and flower-visiting insects. Phytochemistry 72:1647–1654

    Article  CAS  PubMed  Google Scholar 

  • Mauchline AL, Osborne JL, Martin AP, Poppy GM, Powell W (2005) The effects of non-host plant essential oil volatiles on the behaviour of the pollen beetle Meligethes aeneus. Entomol Exp Appl 114:181–188

    Article  CAS  Google Scholar 

  • Meiners T (2015) Chemical ecology and evolution of plant–insect interactions: a multitrophic perspective. Curr Opin Insect Sci 8:22–28

    Article  Google Scholar 

  • Meiners T, Wäckers F, Lewis WJ (2003) Associative learning of complex odors in parasitoid host location. Chem Senses 28:231–236

    Article  CAS  PubMed  Google Scholar 

  • Ninkovic V (2003) Volatile communication between barley plants affects biomass allocation. J Exp Bot 54:1931–1939

    Article  CAS  PubMed  Google Scholar 

  • Ninkovic V, Al Abassi S, Ahmed E, Glinwood R, Pettersson J (2011) Effect of within-species plant genotype mixing on habitat preference of a polyphagous insect predator. Oecologia 166:391–400

    Article  PubMed  Google Scholar 

  • Ninkovic V, Dahlin I, Vucetic A, Petrovic-Obradovic O, Glinwood R, Webster B (2013) Volatile exchange between undamaged plants—a new mechanism affecting insect orientation in intercropping. PLoS One 8:e69431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ninkovic V, Pettersson J (2003) Searching behaviour of the sevenspotted ladybird, Coccinella septempunctata—effects of plant–plant odour interaction. Oikos 100:65–70

    Article  Google Scholar 

  • Nottingham SF, Hardie J, Dawson GW, Hick AJ, Pickett JA, Wadhams LJ, Woodcock CM (1991) Behavioral and electrophysiological responses of aphids to host and nonhost plant volatiles. J Chem Ecol 17:1231–1242

    Article  CAS  PubMed  Google Scholar 

  • Ober D (2005) Seeing double: gene duplication and diversification in plant secondary metabolism. Trends Plant Sci 10:444–449

    Article  CAS  PubMed  Google Scholar 

  • Peñuelas J, Llusià J (2001) The complexity of factors driving volatile organic compound emission by plants. Biol Plant 44:481–487

    Article  Google Scholar 

  • Perfecto I, Vet LEM (2003) Effect of a nonhost plant on the location behavior of two parasitoids: the tritrophic system of Cotesia spp. (Hymenoptera: Braconidae), Pieris rapae (Lepidoptera: Pieridae), and Brassica oleraceae. Environ Entomol 32:163–174

    Article  Google Scholar 

  • Petermann JS, Müller CB, Roscher C, Weigelt A, Weisser WW, Schmid B (2010) Plant species loss affects life-history traits of aphids and their parasitoids. PLoS One 5:e12053

    Article  PubMed  PubMed Central  Google Scholar 

  • Pierik R, Ballaré CL, Dicke M (2014) Ecology of plant volatiles: taking a plant community perspective. Plant Cell Environ 37:1845–1853

    Article  PubMed  Google Scholar 

  • Piesik D, Lemńczyk G, Skoczek A, Lamparski R, Bocianowski J, Kotwica K, Delaney KJ (2011) Fusarium infection in maize: volatile induction of infected and neighboring uninfected plants has the potential to attract a pest cereal leaf beetle, Oulema melanopus. J Plant Physiol 168:1534–1542

    Article  CAS  PubMed  Google Scholar 

  • Ponzio C, Gols R, Pieterse CMJ, Dicke M (2013) Ecological and phytohormonal aspects of plant volatile emission in response to single and dual infestations with herbivores and phytopathogens. Funct Ecol 27:587–598

    Article  Google Scholar 

  • Randlkofer B, Obermaier E, Meiners T (2007) Mother’s choice of the oviposition site: balancing risk of egg parasitism and need of food supply for the progeny with an infochemical shelter? Chemoecology 17:177–186

    Article  Google Scholar 

  • Randlkofer B, Obermaier E, Casas J, Meiners T (2010) Connectivity counts—disentangling effects of vegetation structure elements on the searching movement of a parasitoid. Ecol Entomol 35:446–455

    Google Scholar 

  • Rapparini F, Llusià J, Peňuelas J (2008) Effect of arbuscular mycorrhizal (AM) colonization on terpene emission and content of Artemisia annua L. Plant Biol 10:108–122

    Article  CAS  PubMed  Google Scholar 

  • Reddy GV, Guerrero A (2004) Interactions of insect pheromones and plant semiochemicals. Trends Plant Sci 9:253–261

    Article  CAS  PubMed  Google Scholar 

  • Root RB (1973) Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol Monogr 43:95–120

    Article  Google Scholar 

  • Rostas M, Eggert K (2008) Ontogenetic and spatio-temporal patterns of induced volatiles in Glycine max in the light of the optimal defence hypothesis. Chemoecology 18:29–38

    Article  CAS  Google Scholar 

  • Salamanca J, Pareja M, Rodriguez-Saona C, Resende ALS, Souza B (2015) Behavioral responses of adult lacewings, Chrysoperla externa, to a rose–aphid–coriander complex. Biol Control 80:103–112

    Article  Google Scholar 

  • Salazar D, Jaramillo A, Marquis RJ (2016) The impact of plant chemical diversity on plant–herbivore interactions at the community level. Oecologia. doi:10.1007/s00442-016-3629-y

    PubMed  Google Scholar 

  • Scherling C, Roscher C, Giavalisco P, Schulze E-D, Weckwerth W (2010) Metabolomics unravel contrasting effects of biodiversity on the performance of individual plant species. PLoS One 5:e12569

    Article  PubMed  PubMed Central  Google Scholar 

  • Schröder R, Hilker M (2008) The relevance of background odor in resource location by insects: a behavioral approach. Bioscience 58:308–316

    Article  Google Scholar 

  • Selosse MA, Richard F, He X, Simard SW (2006) Mycorrhizal networks: des liaisons dangereuses? Trends Ecol Evol 21:621–628

    Article  PubMed  Google Scholar 

  • Tahvanainen JO, Root JB (1972) Influence of vegetational diversity on population ecology of a specialized herbivore Phyllotreta cruciferae (Coleoptera: Chrysomelidae). Oecologia 10:321–346

    Article  Google Scholar 

  • Tilman DG (1988) Secondary succession and the pattern of plant dominance along experimental nitrogen gradients. Ecol Monogr 57:189–214

    Article  Google Scholar 

  • Turlings TCJ, Ton J (2006) Exploiting scents of distress: the prospect of manipulating herbivore-induced plant odours to enhance the control of agricultural pests. Curr Opin Plant Biol 9:421–427

    Article  PubMed  Google Scholar 

  • Unsicker SB, Baer N, Kahmen A, Wagner M, Buchmann N, Weisser WW (2006) Invertebrate herbivory along a gradient of plant species diversity in extensively managed grasslands. Oecologia 150:233–246

    Article  PubMed  Google Scholar 

  • Vet LEM, Lewis W, Cardé R (1995) Parasitoid foraging and learning. In: Cardé R, Bell W (eds) Chemical ecology of insects, 2nd edn. Chapman & Hall, New York, NY, pp 65–101

    Chapter  Google Scholar 

  • Vet LEM, De Jong AG, Franchi E, Papaj DR (1998) The effect of complete versus incomplete information on odour discrimination in a parasitic wasp. Anim Behav 55:1271–1279

    Article  PubMed  Google Scholar 

  • Visser JH (1986) Host odor perception in phytophagous insects. Annu Rev Entomol 31:121–144

    Article  Google Scholar 

  • Wäschke N, Meiners T, Rostas M (2013) Foraging strategies of insect parasitoids in complex chemical environments. In: Wajnberg E, Colazza S (eds) Recent advances in chemical ecology of insect parasitoids. John Wiley & Sons, Chichester, UK, pp 193–224

    Google Scholar 

  • Wäschke N, Hardge C, Hancock C, Hilker M, Obermaier E, Meiners T (2014) Habitats as complex odour environments: how does plant diversity affect herbivore and parasitoid orientation? PLoS One 9:e85152

    Article  PubMed  PubMed Central  Google Scholar 

  • Wäschke N, Hancock C, Hilker M, Obermaier E, Meiners T (2015) Does vegetation complexity affect host plant chemistry, and thus multitrophic interactions, in a human-altered landscape? Oecologia 179:281–292

    Article  PubMed  Google Scholar 

  • Wilson JK, Kessler A, Woods HA (2015) Noisy communication via airborne infochemicals. BioScience 65:667–677

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torsten Meiners .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Meiners, T. (2016). Ecological Role of Odour Diversity. In: Blande, J., Glinwood, R. (eds) Deciphering Chemical Language of Plant Communication. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-33498-1_6

Download citation

Publish with us

Policies and ethics