Skip to main content

Measuring Rapid Changes in Plant Volatiles at Different Spatial Levels

  • Chapter
  • First Online:
Deciphering Chemical Language of Plant Communication

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

The majority of volatile chemical measurements related to plant communication processes have been conducted at relatively small spatial scales. Relatively little is known about how volatile-mediated signalling functions at larger scales, such as large plant, ecosystem or region. To understand these issues, real-time measurement of volatile organic compounds (VOC), which has been successfully used in the atmospheric science community for almost two decades, is required. When VOCs and vertical wind speed are measured at sufficiently high temporal resolution, eddy correlation techniques can be used to provide direct information about the ecosystem biosphere–atmosphere exchange. These very fast measurements can reflect the true dynamics of the concentrations of key semiochemicals, which could otherwise be averaged out over longer time periods. Furthermore, they allow for direct measurement of their ecosystem net flux from a well-defined area, which enables a holistic understanding of a habitat’s chemistry and physics. This chapter is intended to inspire chemical ecologists to view the bigger picture in chemical communication by applying real-time measurement approaches at larger scales. This chapter presents the principles of real-time measurements of semiochemicals by PTR-MS and the eddy covariance technique along with examples of their current and potential applications in field measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

GC-MS:

Gas chromatography mass spectrometry

PBL:

Planetary boundary layer

PTR-MS:

Proton transfer reaction mass spectrometry

QMS:

Quadrupole mass spectrometer (a detector used in a classic PTR-MS resolving ions at a unit mass resolution with 1 Da, e.g. 153 for protonated methyl salicylate).

SPME:

Solid-phase micro-extraction fibres.

SQT:

Sesquiterpenes

TOF:

Time-of-Flight detector (a detector used in a novel type of PTR-MS resolving an exact mass within ~1 mDa, e.g. 153.055 for protonated methyl salicylate)

VOC:

Volatile organic compounds

BVOC:

Biogenic VOC

References

  • Amann A, Poupart G, Telser S, Ledochowski M, Schmid A, Mechtcheriakov S (2004) Applications of breath gas analysis in medicine. Int J Mass Spectom Ion Process 239(2–3):227–233

    Article  CAS  Google Scholar 

  • Arya PS (2001) Introduction to micrometeorology, vol 79. Academic Press, London

    Google Scholar 

  • Baldocchi DD (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Glob Chang Biol 9(4):479–492

    Article  Google Scholar 

  • Bamberger I, Hortnagl L, Ruuskanen TM, Schnitzhofer R, Muller M, Graus M, Karl T, Wohlfahrt G, Hansel A (2011) Deposition fluxes of terpenes over grassland. J Geophys Res Atmos 116. doi:10.1029/2010jd015457

  • Biasioli F, Gasperi F, Yeretzian C, Märk TD (2011) PTR-MS monitoring of VOCs and BVOCs in food science and technology. TrAC Trends Anal Chem 30(7):968–977

    Article  CAS  Google Scholar 

  • Birkett MA, Campbell CAM, Chamberlain K, Guerrieri E, Hick AJ, Martin JL, Matthes M, Napier JA, Pettersson J, Pickett JA, Poppy GM, Pow EM, Pye BJ, Smart LE, Wadhams GH, Wadhams LJ, Woodcock CM (2000) New roles for cis-jasmone as an insect semiochemical and in plant defense. Proc Natl Acad Sci USA 97(16):9329–9334. doi:10.1073/pnas.160241697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blake RS, Monks PS, Ellis AM (2009) Proton-transfer reaction mass spectrometry. Chem Rev 109(3):861–896. doi:10.1021/cr800364q

    Article  CAS  PubMed  Google Scholar 

  • Bouvier-Brown NC, Holzinger R, Palitzsch K, Goldstein AH (2007) Quantifying sesquiterpene and oxygenated terpene emissions from live vegetation using solid-phase microextraction fibers. J Chromatogr A 1161 (1):113–120

    Google Scholar 

  • Bouvier-Brown NC, Goldstein AH, Worton DR, Matross DM, Gilman JB, Kuster WC, Welsh-Bon D, Warneke C, de Gouw JA, Cahill TM, Holzinger R (2009) Methyl chavicol: characterization of its biogenic emission rate, abundance, and oxidation products in the atmosphere. Atmos Chem Phys 9(6):2061–2074

    Article  CAS  Google Scholar 

  • Brilli F, Hörtnagl L, Bamberger I, Schnitzhofer R, Ruuskanen TM, Hansel A, Loreto F, Wohlfahrt G (2012) Qualitative and quantitative characterization of volatile organic compound emissions from cut grass. Environ Sci Technol 46(7):3859–3865. doi:10.1021/es204025y

    Article  CAS  PubMed  Google Scholar 

  • Businger JA, Oncley SP (1990) Flux measurement with conditional sampling. J Atmos Oceanic Tech 7(2):349–352

    Article  Google Scholar 

  • Chapman JW, Drake VA, Reynolds DR (2011) Recent insights from radar studies of insect flight. Annu Rev Entomol 56:337–356

    Article  CAS  PubMed  Google Scholar 

  • Danner H, Samudrala D, Cristescu SM, Van Dam NM (2012) Tracing hidden herbivores: time-resolved non-invasive analysis of belowground volatiles by proton-transfer-reaction mass spectrometry (PTR-MS). J Chem Ecol 38(6):785–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davison B, Brunner A, Ammann C, Spirig C, Jocher M, Neftel A (2008) Cut-induced VOC emissions from agricultural grasslands. Plant Biol 10(1):76–85. doi:10.1055/s-2007-965043

    Article  CAS  PubMed  Google Scholar 

  • de Gouw J, Warneke C (2007) Measurements of volatile organic compounds in the earths atmosphere using proton-transfer-reaction mass spectrometry. Mass Spectrom Rev 26(2):223–257. doi:10.1002/mas.20119

    Article  PubMed  Google Scholar 

  • Desjardins RL (1977) Description and evaluation of a sensible heat flux detector. Bound Lay Meteorol 11(2):147–154

    Article  Google Scholar 

  • Dudareva N, Pichersky E, Gershenzon J (2004) Biochemistry of plant volatiles. Plant Physiol 135(4):1893–1902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis AM, Mayhew CA (2013) Proton transfer reaction mass spectrometry: principles and applications. Wiley, Chichester

    Google Scholar 

  • Engelberth J, Alborn H, Schmelz E, Tumlinson J (2004) Airborne signals prime plants against insect herbivore attack. Proc Natl Acad Sci USA 101:1781–1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fares S, Gentner DR, Park JH, Ormeno E, Karlik J, Goldstein AH (2011) Biogenic emissions from Citrus species in California. Atmos Environ 45(27):4557–4568. doi:10.1016/j.atmosenv.2011.05.066

    Article  CAS  Google Scholar 

  • Farneti B, Khomenko I, Cappellin L, Ting V, Romano A, Biasioli F, Costa G, Costa F (2014) Comprehensive VOC profiling of an apple germplasm collection by PTR-ToF-MS. Metabolomics 11(4):838–850

    Google Scholar 

  • Foken T, Göckede M, Mauder M, Mahrt L, Amiro B, Munger W (2004) Post-field data quality control. In: Lee WMX, Law B (eds) Handbook of micrometeorology: a guide for surface flux measurement and analysis, vol 29. Kluwer Academic Publishers, Dordrecht, pp 181–203

    Chapter  Google Scholar 

  • Gentner DR, Isaacman G, Worton DR, Chan AW, Dallmann TR, Davis L, Liu S, Day DA, Russell LM, Wilson KR (2012) Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed characterization of organic carbon emissions. Proc Natl Acad Sci USA 109(45):18318–18323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson RW, Pickett JA (1983) Wild potato repels aphids by release of aphid alarm pheromone. Nature 302:608–609

    Article  CAS  Google Scholar 

  • Goldstein AH, Galbally IE (2007) Known and unexplored organic constituents in the earth’s atmosphere. Environ Sci Technol 41(5):1514–1521

    Article  CAS  PubMed  Google Scholar 

  • Graus M, Hansel A, Wisthaler A, Lindinger C, Forkel R, Hauff K, Klauer M, Pfichner A, Rappengluck B, Steigner D, Steinbrecher R (2006) A relaxed-eddy-accumulation method for the measurement of isoprenoid canopy-fluxes using an online gas-chromatographic technique and PTR-MS simultaneously. Atmos Environ 40:S43–S54

    Article  CAS  Google Scholar 

  • Guenther A (2002) Trace gas emission measurements. In: Burden et al (eds) Environmental monitoring handbook, vol 24. McGraw-Hill, New York, NY, pp 1–18

    Google Scholar 

  • Guenther A (2013) Biological and chemical diversity of biogenic volatile organic emissions into the atmosphere. ISRN Atmopsheric Sciences, Article ID 786290:1–27. doi:10.1155/2013/786290

    Google Scholar 

  • Guenther A, Hewitt CN, Erickson D, Fall R, Geron C, Graedel T, Harley P, Klinger L, Lerdau M, Mckay WA, Pierce T, Scholes B, Steinbrecher R, Tallamraju R, Taylor J, Zimmerman P (1995) A global-model of natural volatile organic-compound emissions. J Geophys Res Atmos 100(D5):8873–8892. doi:10.1029/94jd02950

    Article  CAS  Google Scholar 

  • Guenther A, Greenberg J, Harley P, Helmig D, Klinger L, Vierling L, Zimmerman P, Geron C (1996) Leaf, branch, stand and landscape scale measurements of volatile organic compound fluxes from U.S. woodlands. Tree Physiol 16:17–24

    Article  CAS  PubMed  Google Scholar 

  • Guenther AB, Jiang X, Heald CL, Sakulyanontvittaya T, Duhl T, Emmons LK, Wang X (2012) The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci Model Dev 5(6):1471–1492. doi:10.5194/gmd-5-1471-2012

    Article  CAS  Google Scholar 

  • Guha A, Gentner DR, Weber RJ, Provencal R, Goldstein AH (2015) Source apportionment of methane and nitrous oxide in California’s San Joaquin Valley at CalNex 2010 via positive matrix factorization. Atmos Chem Phys 15(20):12043–12063. doi:10.5194/acp-15-12043-2015

    Article  CAS  Google Scholar 

  • Hansel A, Jordan A, Holzinger R, Prazeller P, Vogel W, Lindinger W (1995) Proton-transfer reaction mass-spectrometry—online trace gas-analysis at the Ppb level. Int J Mass Spectom Ion Process 150:609–619

    Article  Google Scholar 

  • Hartungen E, Wisthaler A, Mikoviny T, Jaksch D, Boscaini E, Dunphy PJ, Mark TD (2004) Proton-transfer-reaction mass spectrometry (PTR-MS) of carboxylic acids: determination of Henry’s law constants and axillary odour investigations. Int J Mass Spectom Ion Process 239(2–3):243–248

    Article  Google Scholar 

  • Heil M, Kost C (2006) Priming of indirect defences. Ecol Lett 9:813–817

    Article  PubMed  Google Scholar 

  • Heil M, Ton J (2008) Long-distance signalling in plant defence. Trends Plant Sci 13(6):264–272

    Article  CAS  PubMed  Google Scholar 

  • Hellén H, Dommen J, Metzger A, Gascho A, Duplissy J, Tritscher T, Prevot ASH, Baltensperger U (2008) Using proton transfer reaction mass spectrometry for online analysis of secondary organic aerosols. Environ Sci Technol 42(19):7347–7353. doi:10.1021/es801279m

    Article  PubMed  Google Scholar 

  • Holzinger R, Williams J, Herrmann F, Lelieveld J, Donahue NM, Röckmann T (2010) Aerosol analysis using a thermal-desorption proton-transfer-reaction mass spectrometer (TD-PTR-MS): a new approach to study processing of organic aerosols. Atmos Chem Phys 10(5):2257–2267

    Article  CAS  Google Scholar 

  • Jones C, Kato S, Nakashima Y, Kajii Y (2014) A novel fast gas chromatography method for higher time resolution measurements of speciated monoterpenes in air. Atmos Meas Tech 7(5):1259–1275

    Article  CAS  Google Scholar 

  • Jordan A, Haidacher S, Hanel G, Hartungen E, Mark L, Seehauser H, Schottkowsky R, Sulzer P, Mark TD (2009) A high resolution and high sensitivity proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS). Int J Mass Spectom Ion Process 286(2–3):122–128. doi:10.1016/j.ijms.2009.07.005

    Article  CAS  Google Scholar 

  • Karl TG, Spirig C, Rinne J, Stroud C, Prevost P, Greenberg J, Fall R, Guenther A (2002) Virtual disjunct eddy covariance measurements of organic compound fluxes from a subalpine forest using proton transfer reaction mass spectrometry. Atmos Chem Phys 2(4):279–291. doi:10.5194/acp-2-279-2002

    Article  CAS  Google Scholar 

  • Karl T, Potosnak M, Guenther A, Clark D, Walker J, Herrick JD, Geron C (2004) Exchange processes of volatile organic compounds above a tropical rain forest: implications for modeling tropospheric chemistry above dense vegetation. J Geophys Res Atmos 1984–2012 109((D18)):D18306

    Article  Google Scholar 

  • Karl T, Guenther A, Turnipseed A, Patton EG, Jardine K (2008) Chemical sensing of plant stress at the ecosystem scale. Biogeosciences 5(5):1287–1294

    Article  CAS  Google Scholar 

  • Kaser L, Karl T, Schnitzhofer R, Graus M, Herdlinger-Blatt I, DiGangi J, Sive B, Turnipseed A, Hornbrook R, Zheng W (2012) Comparison of different real time VOC measurement techniques in a ponderosa pine forest. Atmos Chem Phys Discuss 12:27955–27988

    Article  Google Scholar 

  • Knudsen JT, Eriksson R, Gershenzon J, Ståhl B (2006) Diversity and distribution of floral scent. Bot Rev 72(1):1–120

    Article  Google Scholar 

  • Kormann R, Meixner FX (2001) An analytical footprint model for non-neutral stratification. Bound Lay Meteorol 99(2):207–224

    Article  Google Scholar 

  • Laothawornkitkul J, Paul ND, Vickers CE, Possell M, Taylor JE, Mullineaux PM, Hewitt CN (2008) Isoprene emissions influence herbivore feeding decisions. Plant Cell Environ 31(10):1410–1415

    Article  CAS  PubMed  Google Scholar 

  • Lee X, Massman W, Law B (2006) Handbook of micrometeorology: a guide for surface flux measurement and analysis, vol 29. Springer, Dordrecht

    Google Scholar 

  • Lindinger W, Hansel A, Jordan A (1998) On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS)—medical applications, food control and environmental research. Int J Mass Spectom Ion Process 173(3):191–241

    Article  CAS  Google Scholar 

  • Luo J, Huang W, Yuan L, Zhao C, Du S, Zhang J, Zhao J (2013) Evaluation of spectral indices and continuous wavelet analysis to quantify aphid infestation in wheat. Precis Agric 14(2):151–161. doi:10.1007/s11119-012-9283-4

    Article  Google Scholar 

  • McFrederick QS, Fuentes JD, Roulston TA, Kathilankal JC, Lerdau M (2009) Effects of air pollution on biogenic volatiles and ecological interactions. Oecologia 160(3):411–420

    Article  PubMed  Google Scholar 

  • Milli R, Koch UT, de Kramer JJ (1997) EAG measurement of pheromone distribution in apple orchards treated for mating disruption of Cydia pomonella. Entomol Exp Appl 82(3):289–297

    Article  Google Scholar 

  • Misztal PK, Owen SM, Guenther AB, Rasmussen R, Geron C, Harley P, Phillips GJ, Ryan A, Edwards DP, Hewitt CN, Nemitz E, Siong J, Heal MR, Cape JN (2010) Large estragole fluxes from oil palms in Borneo. Atmos Chem Phys 10(9):4343–4358. doi:10.5194/acp-10-4343-2010

    Article  CAS  Google Scholar 

  • Misztal P, Heal M, Nemitz E, Cape J (2012) Development of PTR-MS selectivity for structural isomers: monoterpenes as a case study. Int J Mass Spectom Ion Process 310:10–19

    Article  CAS  Google Scholar 

  • Misztal PK, Karl T, Weber R, Jonsson HH, Guenther AB, Goldstein AH (2014) Airborne flux measurements of biogenic isoprene over California. Atmos Chem Phys 14(19):10631–10647. doi:10.5194/acp-14-10631-2014

    Article  Google Scholar 

  • Misztal PK, Hewitt CN, Wildt J, Blande JD, Eller ASD, Fares S, Gentner DR, Gilman JB, Graus M, Greenberg J, Guenther AB, Hansel A, Harley P, Huang M, Jardine K, Karl T, Kaser L, Keutsch FN, Kiendler-Scharr A, Kleist E, Lerner BM, Li T, Mak J, Nölscher AC, Schnitzhofer R, Sinha V, Thornton B, Warneke C, Wegener F, Werner C, Williams J, Worton DR, Yassaa N, Goldstein AH (2015) Atmospheric benzenoid emissions from plants rival those from fossil fuels. Sci Rep 5:12064. doi:10.1038/srep12064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moncrieff J, Valentini R, Greco S, Guenther S, Ciccioli P (1997) Trace gas exchange over terrestrial ecosystems: methods and perspectives in micrometeorology. J Exp Bot 48(5):1133–1142. doi:10.1093/jxb/48.5.1133

    Article  CAS  Google Scholar 

  • Nemitz E, Sutton MA, Gut A, San José R, Husted S, Schjoerring JK (2000) Sources and sinks of ammonia within an oilseed rape canopy. Agr Forest Meteorol 105(4):385–404

    Article  Google Scholar 

  • Nemitz E, Flynn M, Williams PI, Milford C, Theobald MR, Blatter A, Gallagher MW, Sutton MA (2001) A relaxed eddy accumulation system for the automated measurement of atmospheric ammonia fluxes. Water Air Soil Pollut Focus 1(5):189–202

    Article  CAS  Google Scholar 

  • Ovaskainen O, Smith AD, Osborne JL, Reynolds DR, Carreck NL, Martin AP, Niitepõld K, Hanski I (2008) Tracking butterfly movements with harmonic radar reveals an effect of population age on movement distance. Proc Natl Acad Sci USA 105(49):19090–19095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owen SM, MacKenzie AR, Stewart H, Donovan R, Hewitta CN (2003) Biogenic volatile organic compound (VOC) emission estimates from an urban tree canopy. Ecol Appl 13(4):927–938

    Article  Google Scholar 

  • Park J-H, Goldstein A, Timkovsky J, Fares S, Weber R, Karlik J, Holzinger R (2013a) Active atmosphere-ecosystem exchange of the vast majority of detected volatile organic compounds. Science 341(6146):643–647

    Article  CAS  PubMed  Google Scholar 

  • Park JH, Goldstein AH, Timkovsky J, Fares S, Weber R, Karlik J, Holzinger R (2013b) Eddy covariance emission and deposition flux measurements using proton transfer reaction–time of flight–mass spectrometry (PTR-TOF-MS): comparison with PTR-MS measured vertical gradients and fluxes. Atmos Chem Phys 13(3):1439–1456. doi:10.5194/acp-13-1439-2013

    Article  CAS  Google Scholar 

  • Peñuelas J, Llusià J, Filella I (2007) Methyl salicylate fumigation increases monoterpene emission rates. Biol Plant 51(2):372–376

    Article  Google Scholar 

  • Reichstein M, Bahn M, Mahecha MD, Kattge J, Baldocchi DD (2014) Linking plant and ecosystem functional biogeography. Proc Natl Acad Sci USA 111(38):13697–13702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rinne HJI, Guenther AB, Warneke C, de Gouw JA, Luxembourg SL (2001) Disjunct eddy covariance technique for trace gas flux measurements. Geophys Res Lett 28(16):3139–3142

    Article  Google Scholar 

  • Ruuskanen TM, Mueller M, Schnitzhofer R, Karl T, Graus M, Bamberger I, Hortnagl L, Brilli F, Wohlfahrt G, Hansel A (2011) Eddy covariance VOC emission and deposition fluxes above grassland using PTR-TOF. Atmos Chem Phys 11(2):611–625. doi:10.5194/acp-11-611-2011

    Article  CAS  Google Scholar 

  • Schaub A, Blande JD, Graus M, Oksanen E, Holopainen JK, Hansel A (2010) Real‐time monitoring of herbivore induced volatile emissions in the field. Physiol Plant 138(2):123–133

    Article  CAS  PubMed  Google Scholar 

  • Schripp T, Etienne S, Fauck C, Fuhrmann F, Märk L, Salthammer T (2014) Application of proton‐transfer‐reaction‐mass‐spectrometry for indoor air quality research. Indoor Air 24(2):178–189

    Article  CAS  PubMed  Google Scholar 

  • Shaw MD, Lee JD, Davison B, Vaughan A, Purvis RM, Lewis AC, Hewitt CN (2014) Airborne determination of the temporo-spatial distribution of benzene, toluene, nitrogen oxides and ozone in the boundary layer across Greater London, UK. Atmos Chem Phys Discuss 14(19):27335–27371. doi:10.5194/acpd-14-27335-2014

    Article  Google Scholar 

  • Steiner A, Pressley S, Botros A, Jones E, Chung S, Edburg S (2011) Analysis of coherent structures and atmosphere-canopy coupling strength during the CABINEX field campaign. Atmos Chem Phys 11(23):11921–11936

    Article  CAS  Google Scholar 

  • Sulzer P, Hartungen E, Hanel G, Feil S, Winkler K, Mutschlechner P, Haidacher S, Schottkowsky R, Gunsch D, Seehauser H (2014) A proton transfer reaction-quadrupole interface time-of-flight mass spectrometer (PTR-QiTOF): high speed due to extreme sensitivity. Int J Mass Spectom Ion Process 368:1–5

    Article  CAS  Google Scholar 

  • Tan KH, Nishida R (2012) Methyl eugenol: its occurrence, distribution, and role in nature, especially in relation to insect behavior and pollination. J Insect Sci 12(1):56

    PubMed  PubMed Central  Google Scholar 

  • Tholl D, Boland W, Hansel A, Loreto F, Röse US, Schnitzler JP (2006) Practical approaches to plant volatile analysis. Plant J 45(4):540–560

    Article  CAS  PubMed  Google Scholar 

  • Warneke C, Veres P, Murphy SM, Soltis J, Field RA, Graus MG, Koss A, Li SM, Li R, Yuan B, Roberts JM, de Gouw JA (2015) PTR-QMS versus PTR-TOF comparison in a region with oil and natural gas extraction industry in the Uintah Basin in 2013. Atmos Meas Tech 8(1):411–420. doi:10.5194/amt-8-411-2015

    Article  CAS  Google Scholar 

  • Yi H, Heil M, Adame-Alvarez R, Ballhorn D, Ryu C (2009) Airborne induction and priming of plant defenses against a bacterial pathogen. Plant Physiol 151:2152–2161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawel K. Misztal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Misztal, P.K. (2016). Measuring Rapid Changes in Plant Volatiles at Different Spatial Levels. In: Blande, J., Glinwood, R. (eds) Deciphering Chemical Language of Plant Communication. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-33498-1_4

Download citation

Publish with us

Policies and ethics