Advertisement

Environmental Impacts on Plant Volatile Emission

  • Lucian Copolovici
  • Ülo NiinemetsEmail author
Chapter
Part of the Signaling and Communication in Plants book series (SIGCOMM)

Abstract

Plants in their natural environment are often exposed to a variety of environmental stresses. This chapter emphasises the importance of distinguishing among stress effects on constitutive and stress-induced volatile emissions and, within constitutive emissions, among stress effects on emissions from specialised storage compartments (storage emissions) and de novo emissions. Among constitutive emissions, de novo emissions are typically more sensitive to stress than storage emissions. Depending on stress severity, the emission response is either physiological or the emission response is controlled at the gene expression level. This chapter analyses the impacts of heat, cold, drought and waterlogging stresses on constitutive and induced emissions, highlights similarities and differences of various stresses on volatile release and outlines the gaps in knowledge. We argue that for a fully mechanistic understanding of environmental impacts on plant chemical communication channels, more work is needed to obtain quantitative stress dose versus emission responses for different stresses in species of differing stress tolerance.

Keywords

Heat Stress Isoprene Emission Green Leaf Volatile Biogenic Volatile Organic Compound Monoterpene Emission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Funding for this study has been provided by the Estonian Ministry of Science and Education (institutional grant IUT-8-3), the European Commission through the European Regional Development Fund (Centre of Excellence EcolChange), the European Research Council (advanced grant 322603, SIP-VOL+) and the European Commission and the Government of Romania (project POSCCE 621/2014). We thank Dr. Astrid Kännaste for some useful suggestions on the manuscript.

References

  1. Adams WW III, Demmig-Adams B, Rosenstiel TH, Ebbert V (2001) Dependence of photosynthesis and energy dissipation activity upon growth form and light environment during the winter. Photosynth Res 67:51–62PubMedCrossRefGoogle Scholar
  2. Ainsworth EA, Ort DR (2010) How do we improve crop production in a warming world? Plant Physiol 154:526–530PubMedPubMedCentralCrossRefGoogle Scholar
  3. Arneth A, Niinemets Ü (2010) Induced BVOCs: how to bug our models? Trends Plant Sci 15:118–125PubMedCrossRefGoogle Scholar
  4. Arneth A, Monson RK, Schurgers G, Niinemets Ü, Palmer PI (2008) Why are estimates of global isoprene emissions so similar (and why is this not so for monoterpenes)? Atmos Chem Phys 8:4605–4620CrossRefGoogle Scholar
  5. Arneth A, Harrison SP, Zaehle S, Tsigaridis K, Menon S, Bartlein PJ, Feichter J, Korhola A, Kulmala M, O’Donnell D, Schurgers G, Sorvari S, Vesala T (2010) Terrestrial biogeochemical feedbacks in the climate system. Nat Geosci 3:525–532CrossRefGoogle Scholar
  6. Aros D, Gonzalez V, Allemann RK, Mueller CT, Rosati C, Rogers HJ (2012) Volatile emissions of scented Alstroemeria genotypes are dominated by terpenes, and a myrcene synthase gene is highly expressed in scented Alstroemeria flowers. J Exp Bot 63:2739–2752Google Scholar
  7. Azuma H, Nagasawa J-i, Setoguchi H (2010) Floral scent emissions from Asarum yaeyamense and related species. Biochem Syst Ecol 38:548–553CrossRefGoogle Scholar
  8. Baldwin IT (2010) Plant volatiles. Curr Biol 20:R392–R397PubMedCrossRefGoogle Scholar
  9. Baldwin IT, Halitschke R, Paschold A, von Dahl CC, Preston CA (2006) Volatile signaling in plant-plant interactions: “talking trees” in the genomics era. Science 311:812–815PubMedCrossRefGoogle Scholar
  10. Bamberger I, Hoertnagl L, Schnitzhofer R, Graus M, Ruuskanen TM, Mueller M, Dunkl J, Wohlfahrt G, Hansel A (2010) BVOC fluxes above mountain grassland. Biogeosciences 7:1413–1424CrossRefGoogle Scholar
  11. Beauchamp J, Wisthaler A, Hansel A, Kleist E, Miebach M, Niinemets Ü, Schurr U, Wildt J (2005) Ozone induced emissions of biogenic VOC from tobacco: relations between ozone uptake and emission of LOX products. Plant Cell Environ 28:1334–1343CrossRefGoogle Scholar
  12. Behnke K, Ehlting B, Teuber M, Bauerfeind M, Louis S, Hänsch R, Polle A, Bohlmann J, Schnitzler J-P (2007) Transgenic, non-isoprene emitting poplars don’t like it hot. Plant J 51:485–499PubMedCrossRefGoogle Scholar
  13. Behnke K, Ghirardo A, Janz D, Kanawati B, Esperschütz J, Zimmer I, Schmitt-Kopplin P, Niinemets Ü, Polle A, Schnitzler J-P, Rosenkranz M (2013) Isoprene function in two contrasting poplars under salt and sunflecks. Tree Physiol 33:562–578PubMedCrossRefGoogle Scholar
  14. Bertolde FZ, Almeida AAF, Pirovani CP, Gomes FP, Ahnert D, Baligar VC, Valle RR (2012) Physiological and biochemical responses of Theobroma cacao L. genotypes to flooding. Photosynthetica 50:447–457CrossRefGoogle Scholar
  15. Blanch J-S, Peñuelas J, Sardans J, Llusiá J (2009a) Drought, warming and soil fertilization effects on leaf volatile terpene concentrations in Pinus halepensis and Quercus ilex. Acta Physiol Plant 31:207–218CrossRefGoogle Scholar
  16. Blanch J-S, Peñuelas J, Sardans J, Llusià J (2009b) Drought, warming and soil fertilization effects on leaf volatile terpene concentrations in Pinus halepensis and Quercus ilex. Acta Physiol Plant 31:207–218CrossRefGoogle Scholar
  17. Blande JD, Tiiva P, Oksanen E, Holopainen JK (2007) Emission of herbivore-induced volatile terpenoids from two hybrid aspen (Populus tremula × tremuloides) clones under ambient and elevated ozone concentrations in the field. Glob Chang Biol 13:2538–2550CrossRefGoogle Scholar
  18. Bodner G, Nakhforoosh A, Kaul H-P (2015) Management of crop water under drought: a review. Agron Sust Dev 35:401–442CrossRefGoogle Scholar
  19. Bourtsoukidis E, Kawaletz H, Radacki D, Schuetz S, Hakola H, Hellen H, Noe S, Moelder I, Ammer C, Bonn B (2014) Impact of flooding and drought conditions on the emission of volatile organic compounds of Quercus robur and Prunus serotina. Trees Struct Funct 28:193–204CrossRefGoogle Scholar
  20. Bracho Nunez A, Knothe N, Liberato MAR, Schebeske G, Ciccioli P, Piedade MTF, Kesselmeier J (2009) Flooding effects on plant physiology and VOC emissions from Amazonian tree species from two different flooding environments: Varzea and Igapo. Geophys Res Abstr 11:EGU2009-1497Google Scholar
  21. Brillada C, Nishihara M, Shimoda T, Garms S, Boland W, Maffei ME, Arimura G-i (2013) Metabolic engineering of the C16 homoterpene TMTT in Lotus japonicus through overexpression of (E, E)-geranyllinalool synthase attracts generalist and specialist predators in different manners. New Phytol 200:1200–1211Google Scholar
  22. Carlton AG, Wiedinmyer C, Kroll JH (2009) A review of secondary organic aerosol (SOA) formation from isoprene. Atmos Chem Phys 9:4987–5005CrossRefGoogle Scholar
  23. Centritto M, Brilli F, Fodale R, Loreto F (2011) Different sensitivity of isoprene emission, respiration and photosynthesis to high growth temperature coupled with drought stress in black poplar (Populus nigra) saplings. Tree Physiol 31:275–286PubMedCrossRefGoogle Scholar
  24. Conrath U, Beckers GJM, Flors V, García-Agustín P, Jakab G, Mauch F, Newman M-A, Pieterse CMJ, Poinssot B, Pozo MJ, Pugin A, Schaffrath U, Ton J, Wendehenne D, Zimmerli L, Mauch-Mani B (2006) Priming: getting ready for battle. Mol Plant Microbe Interact 19:1062–1071PubMedCrossRefGoogle Scholar
  25. Copolovici L, Niinemets Ü (2010) Flooding induced emissions of volatile signalling compounds in three tree species with differing waterlogging tolerance. Plant Cell Environ 33:1582–1594PubMedGoogle Scholar
  26. Copolovici LO, Filella I, Llusià J, Niinemets Ü, Peñuelas J (2005) The capacity for thermal protection of photosynthetic electron transport varies for different monoterpenes in Quercus ilex. Plant Physiol 139:485–496PubMedPubMedCentralCrossRefGoogle Scholar
  27. Copolovici L, Kännaste A, Pazouki L, Niinemets Ü (2012) Emissions of green leaf volatiles and terpenoids from Solanum lycopersicum are quantitatively related to the severity of cold and heat shock treatments. J Plant Physiol 169:664–672PubMedCrossRefGoogle Scholar
  28. Copolovici L, Kännaste A, Remmel T, Niinemets Ü (2014) Volatile organic compound emissions from Alnus glutinosa under interacting drought and herbivory stresses. Environ Exp Bot 100:55–63CrossRefGoogle Scholar
  29. de Oliveira MT, Damasceno-Junior GA, Pott A, Paranhos Filho AC, Suarez YR, Parolin P (2014) Regeneration of riparian forests of the Brazilian Pantanal under flood and fire influence. For Ecol Manage 331:256–263CrossRefGoogle Scholar
  30. De Storme N, Geelen D (2014) The impact of environmental stress on male reproductive development in plants: biological processes and molecular mechanisms. Plant Cell Environ 37:1–18PubMedCrossRefGoogle Scholar
  31. Delfine S, Loreto F, Pinelli P, Tognetti R, Alvino A (2005) Isoprenoids content and photosynthetic limitations in rosemary and spearmint plants under water stress. Agr Ecosyst Environ 106:243–252CrossRefGoogle Scholar
  32. Engelhart GJ, Asa-Awuku A, Nenes A, Pandis SN (2008) CCN activity and droplet growth kinetics of fresh and aged monoterpene secondary organic aerosol. Atmos Chem Phys 8:3937–3949CrossRefGoogle Scholar
  33. Fall R (2003) Abundant oxygenates in the atmosphere: a biochemical perspective. Chem Rev 103:4941–4952PubMedCrossRefGoogle Scholar
  34. Fang CW, Monson RK, Cowling EB (1996) Isoprene emission, photosynthesis, and growth in sweetgum (Liquidambar styraciflua) seedlings exposed to short- and long-term drying cycles. Tree Physiol 16:441–446PubMedCrossRefGoogle Scholar
  35. FAO (2003) Review of world water resources by country. Water Reports, RomeGoogle Scholar
  36. Feussner I, Wasternack C (2002) The lipoxygenase pathway. Annu Rev Plant Biol 53:275–297PubMedCrossRefGoogle Scholar
  37. Filella I, Wilkinson MJ, Llusià J, Hewitt CN, Peñuelas J (2007) Volatile organic compounds emissions in Norway spruce (Picea abies) in response to temperature changes. Physiol Plant 130:58–66Google Scholar
  38. Filella I, Peñuelas J, Seco R (2009) Short-chained oxygenated VOC emissions in Pinus halepensis in response to changes in water availability. Acta Physiol Plant 31:311–318Google Scholar
  39. Fineschi S, Loreto F, Staudt M, Peñuelas J (2013) Diversification of volatile isoprenoid emissions from trees: evolutionary and ecological perspectives. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions. Springer, Berlin, pp 1–20CrossRefGoogle Scholar
  40. Flexas J, Díaz-Espejo A, Gago J, Gallé A, Galmés J, Gulías J, Medrano H (2014) Photosynthetic limitations in Mediterranean plants: a review. Environ Exp Bot 103:12–23Google Scholar
  41. Flexas J, Díaz-Espejo A, Conesa MA, Coopman R, Douthe C, Gago J, Gallé A, Galmés J, Medrano H, Ribas Carbo M, Tomàs M, Niinemets Ü (2016) Mesophyll conductance to CO2 and Rubisco as targets for improving intrinsic water use efficiency in C3 plants. Plant Cell Environ 39:965–982Google Scholar
  42. Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436–442PubMedCrossRefGoogle Scholar
  43. Funk JL, Mak JE, Lerdau MT (2004) Stress-induced changes in carbon sources for isoprene production in Populus deltoides. Plant Cell Environ 27:747–755CrossRefGoogle Scholar
  44. Fyfe JC, Gillett NP (2014) Recent observed and simulated warming. Nat Clim Change 4:150–151CrossRefGoogle Scholar
  45. Galmés J, Flexas J, Medrano H, Niinemets Ü, Valladares F (2012) Ecophysiology of photosynthesis in semi-arid environments. In: Flexas J, Loreto F, Medrano H (eds) Terrestrial photosynthesis in a changing environment: a molecular, physiological and ecological approach. Cambridge University Press, Cambridge, pp 448–464CrossRefGoogle Scholar
  46. Genard-Zielinski A-C, Ormeño E, Boissard C, Fernandez C (2014) Isoprene emissions from downy oak under water limitation during an entire growing season: what cost for growth? Plos One 9:e112418Google Scholar
  47. Gershenzon J, Croteau RB (1993) Terpenoid biosynthesis: the basic pathway and formation of monoterpenes, sesquiterpenes, and diterpenes. In: Moore TS (ed) Lipid metabolism in plants. CRC Press, Boca Raton, Ann Arbor, London, Tokyo, pp 339–388Google Scholar
  48. Gillett NP, Arora VK, Zickfeld K, Marshall SJ, Merryfield AJ (2011) Ongoing climate change following a complete cessation of carbon dioxide emissions. Nat Geosci 4:83–87CrossRefGoogle Scholar
  49. Gray DW, Breneman SR, Topper LA, Sharkey TD (2011) Biochemical characterization and homology modeling of methylbutenol synthase and implications for understanding hemiterpene synthase evolution in plants. J Biol Chem 286:20582–20590PubMedPubMedCentralCrossRefGoogle Scholar
  50. Grote R, Keenan T, Lavoir A-V, Staudt M (2010) Process-based simulation of seasonality and drought stress in monoterpene emission models. Biogeosciences 7:257–274CrossRefGoogle Scholar
  51. Grote R, Monson RK, Niinemets Ü (2013) Leaf-level models of constitutive and stress-driven volatile organic compound emissions. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions. Springer, Berlin, pp 315–355CrossRefGoogle Scholar
  52. Guenther AB, Zimmerman PR, Harley PC, Monson RK, Fall R (1993) Isoprene and monoterpene emission rate variability: model evaluations and sensitivity analyses. J Geophys Res 98:12609–12617CrossRefGoogle Scholar
  53. Guenther AB, Jiang X, Heald CL, Sakulyanontvittaya T, Duhl T, Emmons LK, Wang X (2012) The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci Model Dev 5:1471–1492CrossRefGoogle Scholar
  54. Guerra D, Crosatti C, Khoshro HH, Mastrangelo AM, Mica E, Mazzucotelli E (2015) Post-transcriptional and post-translational regulations of drought and heat response in plants: a spider’s web of mechanisms. Front Plant Sci 6:57PubMedPubMedCentralCrossRefGoogle Scholar
  55. Hallquist M, Wenger JC, Baltensperger U, Rudich Y, Simpson D, Claeys M, Dommen J, Donahue NM, George C, Goldstein AH, Hamilton JF, Herrmann H, Hoffmann T, Iinuma Y, Jang M, Jenkin ME, Jimenez JL, Kiendler-Scharr A, Maenhaut W, McFiggans G, Mentel TF, Monod A, Prévôt ASH, Seinfeld JH, Surratt JD, Szmigielski R, Wildt J (2009) The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos Chem Phys 9:5155–5236CrossRefGoogle Scholar
  56. Hanson DT, Sharkey TD (2001) Rate of acclimation of the capacity for isoprene emission in response to light and temperature. Plant Cell Environ 24:937–946CrossRefGoogle Scholar
  57. Harley CDG (2011) Climate change, keystone predation, and biodiversity loss. Science 334:1124–1127PubMedCrossRefGoogle Scholar
  58. Harley P, Fridd-Stroud V, Greenberg J, Guenther A, Vasconcellos P (1998) Emission of 2-methyl-3-buten-2-ol by pines: a potentially large natural source of reactive carbon to the atmosphere. J Geophys Res Atmos 103:25479–25486CrossRefGoogle Scholar
  59. Harley P, Greenberg J, Niinemets Ü, Guenther A (2007) Environmental controls over methanol emission from leaves. Biogeosciences 4:1083–1099CrossRefGoogle Scholar
  60. Harrison D, Hunter MC, Lewis AC, Seakins PW, Bonsang B, Gros V, Kanakidou M, Touaty M, Kavouras I, Mihalopoulos N, Stephanou E, Alves C, Nunes T, Pio C (2001) Ambient isoprene and monoterpene concentrations in a Greek fir (Abies borisii-regis) forest. Reconciliation with emissions measurements and effects on measured OH concentrations. Atmos Environ 35:4699–4711CrossRefGoogle Scholar
  61. Harrison SP, Morfopoulos C, Dani KGS, Prentice IC, Arneth A, Atwell BJ, Barkley MP, Leishman MR, Loreto F, Medlyn BE, Niinemets Ü, Possell M, Peñuelas J, Wright IJ (2013) Volatile isoprenoid emissions from plastid to planet. New Phytol 197:49–57PubMedCrossRefGoogle Scholar
  62. Hartikainen K, Riikonen J, Nerg A-M, Kivimäenpää M, Ahonen V, Tervahauta A, Kärenlampi S, Mäenpää M, Rousi M, Kontunen-Soppela S, Oksanen E, Holopainen T (2012) Impact of elevated temperature and ozone on the emission of volatile organic compounds and gas exchange of silver birch (Betula pendula Roth). Environ Exp Bot 84:33–43Google Scholar
  63. Heiden AC, Kobel K, Langebartels C, Schuh-Thomas G, Wildt J (2003) Emissions of oxygenated volatile organic compounds from plants. Part I: Emissions from lipoxygenase activity. J Atmos Chem 45:143–172CrossRefGoogle Scholar
  64. Heil M, Kost C (2006) Priming of indirect defences. Ecol Lett 9:813–817PubMedCrossRefGoogle Scholar
  65. Herde M, Gärtner K, Köllner TG, Fode B, Boland W, Gershenzon J, Gatz C, Tholl D (2008) Identification and regulation of TPS04/GES, an Arabidopsis geranyllinalool synthase catalyzing the first step in the formation of the insect-induced volatile C16-homoterpene TMTT. Plant Cell 20:1152–1168PubMedPubMedCentralCrossRefGoogle Scholar
  66. Holzinger R, Lee A, Paw KT, Goldstein AH (2005) Observations of oxidation products above a forest imply biogenic emissions of very reactive compounds. Atmos Chem Phys 5:67–75CrossRefGoogle Scholar
  67. Huang M, Sanchez-Moreiras AM, Abel C, Sohrabi R, Lee S, Gershenzon J, Tholl D (2012) The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-β-caryophyllene, is a defense against a bacterial pathogen. New Phytol 193:997–1008Google Scholar
  68. Hüve K, Christ MM, Kleist E, Uerlings R, Niinemets Ü, Walter A, Wildt J (2007) Simultaneous growth and emission measurements demonstrate an interactive control of methanol release by leaf expansion and stomata. J Exp Bot 58:1783–1793PubMedCrossRefGoogle Scholar
  69. Hüve K, Bichele I, Rasulov B, Niinemets Ü (2011) When it is too hot for photosynthesis: heat-induced instability of photosynthesis in relation to respiratory burst, cell permeability changes and H2O2 formation. Plant Cell Environ 34:113–126PubMedCrossRefGoogle Scholar
  70. Ibrahim MA, Mäenpää M, Hassinen V, Kontunen-Soppela S, Malec L, Rousi M, Pietikäinen L, Tervahauta A, Kärenlampi S, Holopainen JK, Oksanen EJ (2010) Elevation of night-time temperature increases terpenoid emissions from Betula pendula and Populus tremula. J Exp Bot 61:1583–1595PubMedPubMedCentralCrossRefGoogle Scholar
  71. Jackson MB, Ishizawa K, Ito O (2009) Evolution and mechanisms of plant tolerance to flooding stress. Ann Bot 103:137–142PubMedPubMedCentralCrossRefGoogle Scholar
  72. Jardine K, Serrano AY, Arneth A, Abrell L, Jardine A, van Haren J, Artaxo P, Rizzo LV, Ishida FY, Karl T, Kesselmeier J, Saleska S, Huxman T (2011) Within-canopy sesquiterpene ozonolysis in Amazonia. J Geophys Res Atmos 116:D19301CrossRefGoogle Scholar
  73. Jiménez E, Lanza B, Martínez E, Albaladejo J (2007) Daytime tropospheric loss of hexanal and trans-2-hexenal: OH kinetics and UV photolysis. Atmos Chem Phys 7:1565–1574CrossRefGoogle Scholar
  74. Joo E, Dewulf J, Amelynck C, Schoon N, Pokorska O, Simpraga M, Steppe K, Aubinet M, Van Langenhove H (2011) Constitutive versus heat and biotic stress induced BVOC emissions in Pseudotsuga menziesii. Atmos Environ 45:3655–3662CrossRefGoogle Scholar
  75. Joó E, Dewulf J, Amelynck C, Schoon N, Pokorska O, Šimpraga M, Steppe K, Aubinet M, Van Langenhove H (2011) Constitutive versus heat and biotic stress induced BVOC emissions in Pseudotsuga menziesii. Atmos Environ 45:3655–3662CrossRefGoogle Scholar
  76. Kalisz A, Sekara A, Cebula S, Grabowska A, Kunicki E (2014) Impact of low-temperature transplant treatment on yield and quality of cauliflower curds in late spring production. Sci Hortic 176:134–142CrossRefGoogle Scholar
  77. Kask K, Kännaste A, Niinemets Ü (2013) Emission of volatile organic compounds as a signal of plant stress. Sci Bull ESCORENA 8:79–93Google Scholar
  78. Kesselmeier J, Staudt M (1999) Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J Atmos Chem 33:23–88CrossRefGoogle Scholar
  79. Kim H-S, Oh J-M, Luan S, Carlson JE, Ahn S-J (2013) Cold stress causes rapid but differential changes in properties of plasma membrane H+-ATPase of camelina and rapeseed. J Plant Physiol 170:828–837Google Scholar
  80. Kleist E, Mentel TF, Andres S, Bohne A, Folkers A, Kiendler-Scharr A, Rudich Y, Springer M, Tillmann R, Wildt J (2012) Irreversible impacts of heat on the emissions of monoterpenes, sesquiterpenes, phenolic BVOC and green leaf volatiles from several tree species. Biogeosciences 9:5111–5123CrossRefGoogle Scholar
  81. Kobayashi H, Takase H, Suzuki Y, Tanzawa F, Takata R, Fujita K, Kohno M, Mochizuki M, Suzuki S, Konno T (2011) Environmental stress enhances biosynthesis of flavor precursors, S-3-(hexan-1-ol)-glutathione and S-3-(hexan-1-ol)-L-cysteine, in grapevine through glutathione S-transferase activation. J Exp Bot 62:1325–1336PubMedCrossRefGoogle Scholar
  82. Konig G, Brunda M, Puxbaum H, Hewitt CN, Duckham SC, Rudolph J (1995) Relative contribution of oxygenated hydrocarbons to the total biogenic VOC emissions of selected mid-European agricultural and natural plant-species. Atmos Environ 29:861–874CrossRefGoogle Scholar
  83. Kozlowski TT, Pallardy SG (2002) Acclimation and adaptive responses of woody plants to environmental stresses. Bot Rev 68:270–334CrossRefGoogle Scholar
  84. Kreuzwieser J, Rennenberg H (2013) Flooding-driven emissions from trees. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions. Springer, Berlin, pp 237–252CrossRefGoogle Scholar
  85. Kreuzwieser J, Scheerer U, Rennenberg H (1999) Metabolic origin of acetaldehyde emitted by poplar (Populus tremula × P. alba) trees. J Exp Bot 50:757–765Google Scholar
  86. Kreuzwieser J, Kühnemann F, Martis A, Rennenberg H, Urban W (2000) Diurnal pattern of acetaldehyde emission by flooded poplar trees. Physiol Plant 108:79–86CrossRefGoogle Scholar
  87. Kreuzwieser J, Harren FJM, Laarhoven LJJ, Boamfa I, te Lintel HS, Scheerer U, Huglin C, Rennenberg H (2001) Acetaldehyde emission by the leaves of trees—correlation with physiological and environmental parameters. Physiol Plant 113:41–49CrossRefGoogle Scholar
  88. Kulmala M, Nieminen T, Chellapermal R, Makkonen R, Bäck J, Kerminen V-M (2013) Climate feedbacks linking the increasing atmospheric CO2 concentration, BVOC emissions, aerosols and clouds in forest ecosystems. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions. Springer, Berlin, pp 489–508CrossRefGoogle Scholar
  89. Küppers BIL, Küppers M (1999) Effects of frost on leaf gas exchange and Rubisco activity in the subalpine species Eucalyptus pauciflora ssp pauciflora Sieb. ex Spreng. (Snow gum). Phyton Ann REI Bot 39:107–116Google Scholar
  90. Lavoir A-V, Staudt M, Schnitzler JP, Landais D, Massol F, Rocheteau A, Rodriguez R, Zimmer I, Rambal S (2009) Drought reduced monoterpene emissions from the evergreen Mediterranean oak Quercus ilex: results from a throughfall displacement experiment. Biogeosciences 6:1167–1180CrossRefGoogle Scholar
  91. Li Z, Sharkey TD (2013) Molecular and pathway controls on biogenic volatile organic compound emissions. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions. Springer, Berlin, pp 119–151CrossRefGoogle Scholar
  92. Liavonchanka A, Feussner N (2006) Lipoxygenases: occurrence, functions and catalysis. J Plant Physiol 163:348–357PubMedCrossRefGoogle Scholar
  93. Llusià J, Peñuelas J, Asensio D, Munné-Bosch S (2005) Airborne limonene confers limited thermotolerance to Quercus ilex. Physiol Plant 123:40–48CrossRefGoogle Scholar
  94. Lombard J, Moreira D (2011) Origins and early evolution of the mevalonate pathway of isoprenoid biosynthesis in the three domains of life. Mol Biol Evol 28:87–99PubMedCrossRefGoogle Scholar
  95. Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA (2001) Ecology—biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808PubMedCrossRefGoogle Scholar
  96. Loreto F, Schnitzler J-P (2010) Abiotic stresses and induced BVOCs. Trends Plant Sci 15:154–166PubMedCrossRefGoogle Scholar
  97. Loreto F, Förster A, Dürr M, Csiky O, Seufert G (1998) On the monoterpene emission under heat stress and on the increased thermotolerance of leaves of Quercus ilex L. fumigated with selected monoterpenes. Plant Cell Environ 21:101–107CrossRefGoogle Scholar
  98. Luo Q, Bange M, Clancy L (2014) Cotton crop phenology in a new temperature regime. Ecol Model 285:22–29CrossRefGoogle Scholar
  99. Matsui K (2006) Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. Curr Opin Plant Biol 9:274–280PubMedCrossRefGoogle Scholar
  100. Mazzucotelli E, Mastrangelo AA, Crosatti C, Guerra D, Stanca AM, Cattivelli L (2008) Abiotic stress response in plants: when post-transcriptional and post-translational regulations control transcription. Plant Sci 174:420–431CrossRefGoogle Scholar
  101. McKiernan AB, Hovenden MJ, Brodribb TJ, Potts BM, Davies NW, O’Reilly-Wapstra JM (2014) Effect of limited water availability on foliar plant secondary metabolites of two Eucalyptus species. Environ Exp Bot 105:55–64Google Scholar
  102. Medori M, Michelini L, Nogues I, Loreto F, Calfapietra C (2012) The impact of root temperature on photosynthesis and isoprene emission in three different plant species., Sci World J 2012: 525827Google Scholar
  103. Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19PubMedCrossRefGoogle Scholar
  104. Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309PubMedCrossRefGoogle Scholar
  105. Monson RK, Trahan N, Rosenstiel TN, Veres P, Moore D, Wilkinson M, Norby RJ, Volder A, Tjoelker MG, Briske DD, Karnosky DF, Fall R (2007) Isoprene emission from terrestrial ecosystems in response to global change: minding the gap between models and observations. Philos Trans R Soc A Math Phys Eng Sci 365:1677–1695CrossRefGoogle Scholar
  106. Nakamura A, Shimada H, Masuda T, Ohta H, Takamiya K (2001) Two distinct isopentenyl diphosphate isomerases in cytosol and plastid are differentially induced by environmental stresses in tobacco. FEBS Lett 506:61–64PubMedCrossRefGoogle Scholar
  107. Niinemets Ü (2010) Mild versus severe stress and BVOCs: thresholds, priming and consequences. Trends Plant Sci 15:145–153PubMedCrossRefGoogle Scholar
  108. Niinemets Ü (2016) Uncovering the hidden facets of drought stress: secondary metabolites make the difference. Tree Physiol 36:129–132Google Scholar
  109. Niinemets Ü, Keenan TF (2014) Photosynthetic responses to stress in Mediterranean evergreens: mechanisms and models. Environ Exp Bot 103:24–41CrossRefGoogle Scholar
  110. Niinemets Ü, Reichstein M (2002) A model analysis of the effects of nonspecific monoterpenoid storage in leaf tissues on emission kinetics and composition in Mediterranean sclerophyllous Quercus species. Glob Biogeochem Cycle 16:1110CrossRefGoogle Scholar
  111. Niinemets Ü, Sun Z (2015) How light, temperature, and measurement and growth [CO2] interactively control isoprene emission in hybrid aspen. J Exp Bot 66:841–851PubMedCrossRefGoogle Scholar
  112. Niinemets Ü, Valladares F (2006) Tolerance to shade, drought and waterlogging in the temperate dendroflora of the Northern hemisphere: tradeoffs, phylogenetic signal and implications for niche differentiation. Ecol Monogr 76:521–547CrossRefGoogle Scholar
  113. Niinemets Ü, Reichstein M, Staudt M, Seufert G, Tenhunen JD (2002) Stomatal constraints may affect emission of oxygenated monoterpenoids from the foliage of Pinus pinea. Plant Physiol 130:1371–1385PubMedPubMedCentralCrossRefGoogle Scholar
  114. Niinemets Ü, Loreto F, Reichstein M (2004) Physiological and physicochemical controls on foliar volatile organic compound emissions. Trends Plant Sci 9:180–186Google Scholar
  115. Niinemets Ü, Arneth A, Kuhn U, Monson RK, Peñuelas J, Staudt M (2010a) The emission factor of volatile isoprenoids: stress, acclimation, and developmental responses. Biogeosciences 7:2203–2223CrossRefGoogle Scholar
  116. Niinemets Ü, Monson RK, Arneth A, Ciccioli P, Kesselmeier J, Kuhn U, Noe SM, Peñuelas J, Staudt M (2010b) The leaf-level emission factor of volatile isoprenoids: caveats, model algorithms, response shapes and scaling. Biogeosciences 7:1809–1832CrossRefGoogle Scholar
  117. Niinemets Ü, Kännaste A, Copolovici L (2013) Quantitative patterns between plant volatile emissions induced by biotic stresses and the degree of damage. Front Plant Sci Front Plant Microbe Interact 4:262Google Scholar
  118. Ormeño E, Mevy JP, Vila B, Bousquet-Melou A, Greff S, Bonin G, Fernandez C (2007) Water deficit stress induces different monoterpene and sesquiterpene emission changes in Mediterranean species. Relationship between terpene emissions and plant water potential. Chemosphere 67:276–284PubMedCrossRefGoogle Scholar
  119. Owen SM, Peñuelas J (2005) Opportunistic emissions of volatile isoprenoids. Trends Plant Sci 10:420–426PubMedCrossRefGoogle Scholar
  120. Pag A, Bodescu A, Kännaste A, Tomescu D, Niinemets Ü, Copolovici L (2013) Volatile organic compounds emission from Betula verrucosa under drought stress. Sci Bull ESCORENA 8:45–53Google Scholar
  121. Parry MAJ, Andralojc PJ, Scales JC, Salvucci ME, Carmo-Silva AE, Alonso H, Whitney SM (2014) Rubisco activity and regulation as targets for crop improvement. J Exp Bot 64:717–730CrossRefGoogle Scholar
  122. Pegoraro E, Rey A, Greenberg J, Harley P, Grace J, Malhi Y, Guenther A (2004) Effect of drought on isoprene emission rates from leaves of Quercus virginiana Mill. Atmos Environ 38:6149–6156CrossRefGoogle Scholar
  123. Pelloux J, Rustérucci C, Mellerowicz EJ (2007) New insights into pectin methylesterase structure and function. Trends Plant Sci 12:267–277PubMedCrossRefGoogle Scholar
  124. Peñuelas J, Staudt M (2010) BVOCs and global change. Trends Plant Sci 15:133–144PubMedCrossRefGoogle Scholar
  125. Peñuelas J, Filella I, Stefanescu C, Llusià J (2005) Caterpillars of Euphydryas aurinia (Lepidoptera: Nymphalidae) feeding on Succisa pratensis leaves induce large foliar emissions of methanol. New Phytol 167:851–857PubMedCrossRefGoogle Scholar
  126. Peñuelas J, Filella I, Seco R, Llusià J (2009) Increase in isoprene and monoterpene emissions after re-watering of droughted Quercus ilex seedlings. Biol Plant 53:351–354CrossRefGoogle Scholar
  127. Peyrot Des Gachons C, Tominaga T, Dubourdieu D (2002) Sulfur aroma precursor present in S-glutathione conjugate form: identification of S-3-(hexan-1-ol)-glutathione in must from Vitis vinifera L. cv. Sauvignon blanc. J Agric Food Chem 50:4076–4079PubMedCrossRefGoogle Scholar
  128. Plaza J, Núñez L, Pujadas M, Pérez-Pastor R, Bermejo V, García-Alonso S, Elvira S (2005) Field monoterpene emission of Mediterranean oak (Quercus ilex) in the central Iberian Peninsula measured by enclosure and micrometeorological techniques: observation of drought stress effect. J Geophys Res Atmos 110:D03303CrossRefGoogle Scholar
  129. Pollastri S, Tsonev T, Loreto F (2014) Isoprene improves photochemical efficiency and enhances heat dissipation in plants at physiological temperatures. J Exp Bot 65:1565–1570PubMedPubMedCentralCrossRefGoogle Scholar
  130. Rajabi Memari H, Pazouki L, Niinemets Ü (2013) The biochemistry and molecular biology of volatile messengers in trees. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions. Springer, Berlin, pp 47–93CrossRefGoogle Scholar
  131. Rasulov B, Hüve K, Välbe M, Laisk A, Niinemets Ü (2009) Evidence that light, carbon dioxide and oxygen dependencies of leaf isoprene emission are driven by energy status in hybrid aspen. Plant Physiol 151:448–460PubMedPubMedCentralCrossRefGoogle Scholar
  132. Rasulov B, Hüve K, Bichele I, Laisk A, Niinemets Ü (2010) Temperature response of isoprene emission in vivo reflects a combined effect of substrate limitations and isoprene synthase activity: a kinetic analysis. Plant Physiol 154:1558–1570PubMedPubMedCentralCrossRefGoogle Scholar
  133. Rasulov B, Bichele I, Hüve K, Vislap V, Niinemets Ü (2015) Acclimation of isoprene emission and photosynthesis to growth temperature in hybrid aspen: resolving structural and physiological controls. Plant Cell Environ 38:751–766PubMedCrossRefGoogle Scholar
  134. Rosenkranz M, Schnitzler J-P (2013) Genetic engineering of BVOC emissions from trees. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions. Springer, Berlin, pp 95–118CrossRefGoogle Scholar
  135. Rottenberger S, Kleiss B, Kuhn U, Wolf A, Piedade MTF, Junk W, Kesselmeier J (2008) The effect of flooding on the exchange of the volatile C2-compounds ethanol, acetaldehyde and acetic acid between leaves of Amazonian floodplain tree species and the atmosphere. Biogeosciences 5:1085–1100CrossRefGoogle Scholar
  136. Ryan AC, Hewitt CN, Possell M, Vickers CE, Purnell A, Mullineaux PM, Davies WJ, Dodd IC (2014) Isoprene emission protects photosynthesis but reduces plant productivity during drought in transgenic tobacco (Nicotiana tabacum) plants. New Phytol 201:205–216PubMedCrossRefGoogle Scholar
  137. Savitch LV, Leonardos ED, Krol M, Jansson S, Grodzinski B, Huner NPA, Öquist G (2002) Two different strategies for light utilization in photosynthesis in relation to growth and cold acclimation. Plant Cell Environ 25:761–771CrossRefGoogle Scholar
  138. Seco R, Filella I, Llusià J, Peñuelas J (2011) Methanol as a signal triggering isoprenoid emissions and photosynthetic performance in Quercus ilex. Acta Physiol Plant 33:2413–2422Google Scholar
  139. Sharkey TD, Loreto F (1993) Water-stress, temperature, and light effects on the capacity for isoprene emission and photosynthesis of kudzu leaves. Oecologia 95:328–333CrossRefGoogle Scholar
  140. Sharkey TD, Singsaas EL (1995) Why plants emit isoprene. Nature 374:769Google Scholar
  141. Sharkey TD, Singsaas EL, Vanderveer PJ, Geron C (1996) Field measurements of isoprene emission from trees in response to temperature and light. Tree Physiol 16:649–654PubMedCrossRefGoogle Scholar
  142. Sharkey TD, Wiberley AE, Donohue AR (2008) Isoprene emission from plants: why and how. Ann Bot 101:5–18PubMedCrossRefGoogle Scholar
  143. Singsaas EL, Sharkey TD (1998) The regulation of isoprene emission responses to rapid leaf temperature fluctuations. Plant Cell Environ 21:1181–1188CrossRefGoogle Scholar
  144. Staudt M, Bertin N (1998) Light and temperature dependence of the emission of cyclic and acyclic monoterpenes from holm oak (Quercus ilex L.) leaves. Plant Cell Environ 21:385–395CrossRefGoogle Scholar
  145. Staudt M, Lhoutellier L (2011) Monoterpene and sesquiterpene emissions from Quercus coccifera exhibit interacting responses to light and temperature. Biogeosciences 8:2757–2771CrossRefGoogle Scholar
  146. Staudt M, Rambal S, Joffre R, Kesselmeier J (2002) Impact of drought on seasonal monoterpene emissions from Quercus ilex in southern France. J Geophys Res D107:4602Google Scholar
  147. Street RA, Hewitt CN, Mennicken S (1997) Isoprene and monoterpene emissions from a Eucalyptus plantation in Portugal. J Geophys Res Atmos 102:15875–15887CrossRefGoogle Scholar
  148. Sun Z, Copolovici L, Niinemets U (2012a) Can the capacity for isoprene emission acclimate to environmental modifications during autumn senescence in temperate deciduous tree species Populus tremula? J Plant Res 125:263–274PubMedCrossRefGoogle Scholar
  149. Sun Z, Niinemets Ü, Hüve K, Noe SM, Rasulov B, Copolovici L, Vislap V (2012b) Enhanced isoprene emission capacity and altered light responsiveness in aspen grown under elevated atmospheric CO2 concentration. Glob Chang Biol 18:3423–3440CrossRefGoogle Scholar
  150. Sun Z, Hüve K, Vislap V, Niinemets Ü (2013) Elevated [CO2] magnifies isoprene emissions under heat and improves thermal resistance in hybrid aspen. J Exp Bot 64:5509–5523PubMedPubMedCentralCrossRefGoogle Scholar
  151. Timmusk S, Abd El-Daim IA, Copolovici L, Tanilas T, Kännaste A, Behers L, Nevo E, Seisenbaeva G, Stenström E, Niinemets Ü (2014) Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS One 9:e96086PubMedPubMedCentralCrossRefGoogle Scholar
  152. Velikova V, Loreto F, Tsonev T, Brilli F, Edreva A (2006) Isoprene prevents the negative consequences of high temperature stress in Platanus orientalis leaves. Funct Plant Biol 33:931–940CrossRefGoogle Scholar
  153. Vickers CE, Gershenzon J, Lerdau MT, Loreto F (2009) A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat Chem Biol 5:283–291PubMedCrossRefGoogle Scholar
  154. Vranova E, Coman D, Gruissem W (2012) Structure and dynamics of the isoprenoid pathway network. Mol Plant 5:318–333PubMedCrossRefGoogle Scholar
  155. Wang D, Fan J, Heckathorn SA (2014) Acclimation of photosynthetic tolerance to acute heat stress at elevated CO2 and N. Plant Sci 226:162–171PubMedCrossRefGoogle Scholar
  156. Way DA, Oren R (2010) Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data. Tree Physiol 30:669–688PubMedCrossRefGoogle Scholar
  157. Westberg H, Lamb B, Kempf K, Allwine G (2000) Isoprene emission inventory for the BOREAS southern study area. Tree Physiol 20:735–743PubMedCrossRefGoogle Scholar
  158. Wiberley AE, Donohue AR, Meier ME, Westphal MM, Sharkey TD (2008) Regulation of isoprene emission in Populus trichocarpa leaves subjected to changing growth temperature. Plant Cell Environ 31:258–267PubMedCrossRefGoogle Scholar
  159. Wilkinson MJ, Monson RK, Trahan N, Lee S, Brown E, Jackson RB, Polley HW, Fay PA, Fall R (2009) Leaf isoprene emission rate as a function of atmospheric CO2 concentration. Glob Chang Biol 15:1189–1200CrossRefGoogle Scholar
  160. Winters AJ, Adams MA, Bleby TM, Rennenberg H, Steigner D, Steinbrecher R, Kreuzwieser J (2009) Emissions of isoprene, monoterpene and short-chained carbonyl compounds from Eucalyptus spp. in southern Australia. Atmos Environ 43:3035–3043CrossRefGoogle Scholar
  161. Wu C, Pullinen I, Andres S, Carriero G, Fares S, Goldbach H, Hacker L, Kasal T, Kiendler-Scharr A, Kleist E, Paoletti E, Wahner A, Wildt J, Mentel TF (2015) Impacts of soil moisture on de novo monoterpene emissions from European beech, Holm oak, Scots pine, and Norway spruce. Biogeosciences 12:177–191CrossRefGoogle Scholar
  162. Yani A, Pauly G, Faye M, Salin F, Gleizes M (1993) The effect of a long-term water-stress on the metabolism and emission of terpenes of the foliage of Cupressus sempervirens. Plant Cell Environ 16:975–981CrossRefGoogle Scholar
  163. Yu B, Zhao CY, Li J, Li JY, Peng G (2015) Morphological, physiological, and biochemical responses of Populus euphratica to soil flooding. Photosynthetica 53:110–117CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.“Aurel Vlaicu” University AradAradRomania
  2. 2.Department of Plant PhysiologyEstonian University of Life SciencesTartuEstonia
  3. 3.Estonian Academy of SciencesTallinnEstonia

Personalised recommendations