Skip to main content

Deciphering Chemical Language of Plant Communication: Synthesis and Future Research Directions

  • Chapter
  • First Online:
Book cover Deciphering Chemical Language of Plant Communication

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

Volatile chemicals emitted by plants constitute cues and signals that provide extensive information to myriad organisms in the community. Chapters in this book provide detail on the production and emission of volatile compounds, a variety of volatile-mediated interactions involving a multitude of organisms, and recent developments on the detection of volatile compounds by plants. In this chapter a synthesis of key points and recurring themes from the previous chapters is provided, and future research directions are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arneth A, Niinemets Ü (2010) Induced BVOCs: how to bug our models? Trends Plant Sci 15:118–125

    Article  CAS  PubMed  Google Scholar 

  • Copolovici L, Kännaste A, Remmel T, Niinemets Ü (2014) Volatile organic compound emissions from Alnus glutinosa under interacting drought and herbivory stresses. Environ Exp Bot 100:55–63

    Article  CAS  Google Scholar 

  • Erb M, Veyrat N, Robert CAM, Xu H, Frey M, Ton J, Turlings TCJ (2015) Indole is an essential herbivore-induced volatile priming signal in maize. Nat Commun 6:6273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenske MP, Hewett Hazelton KD, Hempton AK, Shim JS, Yamamoto BM, Riffell JA, Imaizumi T (2015) Circadian clock gene LATE ELONGATED HYPOCOTYL directly regulates the timing of floral scent emission in Petunia. Proc Natl Acad Sci USA 31:9775–9780

    Article  Google Scholar 

  • Helms AM, De Moraes CM, Tooker JF, Mescher MC (2013) Exposure of Solidago altissima plants to volatile emissions of an insect antagonist (Eurosta solidaginis) deters subsequent herbivory. Proc Natl Acad Sci USA 110:199–204

    Article  CAS  PubMed  Google Scholar 

  • Helms AM, De Moraes CM, Mescher MC, Tooker JF (2014) The volatile emission of Eurosta solidaginis primes herbivore-induced volatile production in Solidago altissima and does not directly deter insect feeding. BMC Plant Biol 14:173

    Article  PubMed  PubMed Central  Google Scholar 

  • Junker RR, Tholl D (2013) Volatile organic compound mediated interactions at the plant–microbe interface. J Chem Ecol 39:810–825

    Article  CAS  PubMed  Google Scholar 

  • Karban R, Yang LH, Edwards KF (2014a) Volatile communication between plants that affects herbivory: a meta-analysis. Ecol Lett 17:44–52

    Article  PubMed  Google Scholar 

  • Karban R, Wetzel WC, Shiojiri K, Ishizaki S, Ramirez SR, Blande JD (2014b) Deciphering the language of plant communication: volatile chemotypes of sagebrush. New Phytol 204:380–385

    Article  PubMed  Google Scholar 

  • Lee K, Seo PJ (2014) Airborne signals from salt-stressed Arabidopsis plants trigger salinity tolerance in neighbouring plants. Plant Signal Behav 9:e28392

    Article  PubMed  PubMed Central  Google Scholar 

  • Mäntylä E, Alessio GA, Blande JD, Heijari J, Holopainen JK, Laaksonen T, Piirtola P, Klemola T (2008) From plants to birds: higher avian predation rates in trees responding to insect herbivory. PLoS One 3(7):e2832

    Article  PubMed  PubMed Central  Google Scholar 

  • Peñuelas J, Farré-Armengol G, Llusià J, Gargallo-Garriga A, Rico L, Sardans J, Terradas J, Filella I (2014) Removal of floral microbiota reduces floral terpene emissions. Sci Rep 4:4. doi:10.1038/srep06727

    Article  Google Scholar 

  • Pierre PS, Jansen JJ, Hordijk CA, van Dam NM, Cortesero AM, Dugravot S (2011) Differences in volatile profiles of turnip plants subjected to single and dual herbivory above- and belowground. J Chem Ecol 37:368–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stam JM, Kroes A, Li YH, Gols R, van Loon JJA, Poelman EH, Dicke M (2014) Plant interactions with multiple insect herbivores: from community to genes. Annu Rev Plant Biol 65:689–713

    Article  CAS  PubMed  Google Scholar 

  • Stork WFJ, Weinhold A, Baldwin IT (2011) Trichomes as dangerous lollipops: do lizards also use caterpillar body and frass odor to optimize their foraging? Plant Signal Behav 6:1893–1896

    Article  PubMed  PubMed Central  Google Scholar 

  • Sugimoto K, Matsui K, Iijima Y, Akakabe Y, Muramoto S, Ozawa R, Uefune M, Sasaki R, Alamgir KM, Akitake S, Nobuke T, Galis I, Aoki K, Shibata D, Takabayashi J (2014) Intake and transformation to a glycoside of (Z)-3-hexenol from infested neighbors reveals a mode of plant odor reception and defense. Proc Natl Acad Sci USA 111:7144–7149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao YL, Danna CH, Zemp FJ, Titov V, Ciftci ON, Przybylski R, Ausubel FM, Kovalchuk I (2011) UV-C-irradiated Arabidopsis and tobacco emit volatiles that trigger genomic instability in neighbouring plants. Plant Cell 23:3824–3852

    Article  Google Scholar 

  • Yon F, Joo Y, Llorca LC, Rothe E, Baldwin IT, Kim S-G (2016) Silencing Nicotiana attenuata LHY and ZTL alters circadian rhythms in flowers. New Phytol 209:1058–1066

    Article  CAS  PubMed  Google Scholar 

  • Zebelo SA, Matsui K, Ozawa R, Maffei ME (2012) Plasma membrane potential depolarization and cytosolic calcium flux are early events involved in tomato (Solanum lycopersicon) plant-to-plant communication. Plant Sci 196:93–100

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Glinwood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Glinwood, R., Blande, J.D. (2016). Deciphering Chemical Language of Plant Communication: Synthesis and Future Research Directions. In: Blande, J., Glinwood, R. (eds) Deciphering Chemical Language of Plant Communication. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-33498-1_14

Download citation

Publish with us

Policies and ethics