Skip to main content

Uptake and Conversion of Volatile Compounds in Plant–Plant Communication

  • Chapter
  • First Online:
Deciphering Chemical Language of Plant Communication

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

Volatile organic compounds emitted from plants have an important role in communication between plants and other organisms (e.g. plant–pollinator, plant–herbivore and plant–carnivore communication). Recent studies have revealed a novel mechanism of volatile-mediated plant–plant communication. Here, plants take up volatiles through the stomata and by adsorption on the leaf surface. The volatiles are then processed within leaf tissues. Reduction and esterification of compounds increase their volatility, and the converted volatiles are emitted again into the air. Volatiles taken up by a plant also undergo glycosylation and glutathionylation, resulting in their conversion to non-volatile compounds that have ecological functions. For example, one of the glycosylated compounds, (Z)-3-hexenyl vicianoside, functions in plant defences against insect herbivory. Conversion to non-volatile forms would enable uninjured plants to be more defended against herbivores moving from neighbouring herbivore-infested plants. Uptake and conversion of volatile compounds in plants is discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aikawa S, Koayashi MJ, Satake A, Shimizu KK, Kudoh H (2010) Robust control of the seasonal expression of the Arabidopsis FLC gene in a fluctuating environment. Proc Natl Acad Sci USA 107:11632–11637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali M, Sugimoto K, Ramadan A, Arimura G (2013) Memory of plant communications for priming anti-herbivore responses. Sci Rep 3:1872

    PubMed  PubMed Central  Google Scholar 

  • Arimura G, Ozawa R, Shimoda T, Nishioka T, Boland W, Takabayashi J (2000) Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature 406:512–515

    Article  CAS  PubMed  Google Scholar 

  • Arimura G, Matsui K, Takabayashi J (2009) Chemical and molecular ecology of herbivore-induced plant volatiles: proximate factors and their ultimate functions. Plant Cell Physiol 50:911–923

    Article  CAS  PubMed  Google Scholar 

  • Choh Y, Shimoda T, Ozawa R, Dicke M, Takabayashi J (2004) Exposure of lima bean leaves to volatiles from herbivore-induced conspecific plants results in emission of carnivore attractants: active or passive process? J Chem Ecol 30:1797–1808

    Article  Google Scholar 

  • D’Auria JC, Pichersky E, Schaub A, Hansel Am Gershenzon J (2007) Characterization of a BAHD acyltransferase responsible for producing the green leaf volatile (Z)-3-hexen-1-ly acetate in Arabidopsis thaliana. Plant J 49:194–207

    Article  PubMed  Google Scholar 

  • Davoine C, Falletti O, Douki T, Iacazio G, Ennar N, Montillet JL, Triantaphylidès C (2006) Adducts of oxylipin electrophiles to glutathione reflect a 13 specificity of the downstream lipoxygenase pathway in the tobacco hypersensitive response. Plant Physiol 140:1484–1493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Vega C, Herrera CM, Dötterl S (2014) Floral volatiles play a key role in specialized ant pollination. Perspect Plant Ecol Evol Syst 16:32–42

    Article  Google Scholar 

  • Dicke M (2009) Behavioral and community ecology of plants that cry for help. Plant Cell Environ 32:654–665

    Article  CAS  PubMed  Google Scholar 

  • Dicke, Sabelis (1988) Infochemical terminology: based on cost–benefit analysis rather than origin of compounds? Funct Ecol 2:131–139

    Article  Google Scholar 

  • Fedrizzi B, Guella G, Perenzoni D, Gasperotti M, Masuero D, Vrhovske U, Mattivi F (2012) Identification of intermediates involved in the biosynthetic pathway of 3-mercaptohexan-1-ol conjugates in yellow passion fruit (Passiflora edulis f. flavicarpa). Phytochemistry 77:287–293

    Article  CAS  PubMed  Google Scholar 

  • Forouhar F, Yang Y, Kumar D, Chen Y, Fridman E, Park SW, Chiang Y, Acton TB, Montelione GT, Pichersky E, Klessig DF, Tong L (2005) Structural and biochemical studies identify tobacco SABP2 as a methyl salicylate esterase and implicate it in plant innate immunity. Proc Natl Acad Sci USA 102:1773–1778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horiuchi J, Arimura G, Ozawa R, Shimoda T, Takabayashi J, Nishioka T (2003) Lima bean leaves exposed to herbivore-induced conspecific plant volatiles attract herbivores in addition to carnivores. Appl Entomol Zool 38:365–368

    Article  Google Scholar 

  • Horiuchi J, Muroi A, Takabayashi J, Nishioka T (2007) Exposing Arabidopsis seedlings to borneol and bornyl acetate affects root growth: specificity due to the chemical and optical structures of the compounds. J Plant Interact 2:101–104

    Article  CAS  Google Scholar 

  • Kikuta Y, Ueda H, Nakayama K, Katsuda Y, Ozawa R, Takabayashi J, Hatanaka A, Matsuda K (2011) Specific regulation of pyrethrin biosynthesis in Chrysanthemum cinerariaefolium by a blend of volatiles emitted from artificially damaged conspecific plants. Plant Cell Physiol 52:588–596

    Article  CAS  PubMed  Google Scholar 

  • Kim E-K, Bowles DJ (2004) A class of plant glycosyltransferases involved in cellular homeostasis. EMBO J 23:2915–2922

    Article  Google Scholar 

  • Kishimoto K, Matsui K, Ozawa R, Takabayashi J (2005) Volatile C6-aldehydes and allo-ocimene activate defense genes and induce resistance against Botrytis cinerea in Arabidopsis thaliana. Plant Cell Phys 46:1093–1102

    Article  CAS  Google Scholar 

  • Kobayashi H, Takase H, Suzuki Y, Tanzawa F, Takata R, Fujita K, Kohno M, Mochizuki M, Suzuki S, Konno T (2011) Environmental stress enhances biosynthesis of flavor precursors, S-3-(hexean-1-ol)-glutathion and S-3-(hexan-1-ol)-L-cysteine, in grapevine through glutathione S-transferase activation. J Exp Bot 62:1325–1336

    Article  CAS  PubMed  Google Scholar 

  • Kumar D, Klessig DF (2003) High-affinity salicylic acid-binding protein 2 is required for plant innate immunity and had salicylic acid-stimulated lipase activity. Proc Natl Acad Sci USA 100:16101–16106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loughrin JH, Manukian A, Heath RR, Turlings TCJ, Tumlinson JH (1994) Diurnal cycle of emission of induced volatile terpenoids by herbivore-injured cotton plants. Proc Natl Acad Sci USA 91:11836–11840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Louveau T, Leitao C, Green S, Hamiaux C, van der Rest B, Dechy Cabaret O, Atkinson RG, Chervin C (2011) Predicting the substrare specificity of a glycosyltransferase implicated in the production of phenolic volatiles in tomato fruit. FEBS J 278:390–400

    Article  CAS  PubMed  Google Scholar 

  • Maeda T, Takabayashi J, Yano S, Takafuji A (2001) Effects of light on the tritrophic interaction between kidney bean plants, two-spotted spider mites and predatory mites, Amblysieus womersleyi (Acari: phytoseiidae). Exp Appl Acarol 24:415–425

    Article  Google Scholar 

  • Mano J (2012) Reactive carbonyl species: their production from lipid perocides, action in environmental stress, and the detocification mechanism. Plant Physiol Biochem 59:90–97

    Article  CAS  PubMed  Google Scholar 

  • Matsui K (2006) Green leaf volatile: hydroperoxide lyase pathway of oxylipin metabolism. Curr Opin Plant Biol 9:274–280

    Article  CAS  PubMed  Google Scholar 

  • Matsui K, Sugimoto K, Mano J, Ozawa R, Takabayashi J (2012) Differential metabolisms of green leaf volatiles in injured and intact parts of a wounded leaf meet distinct ecophysiological requirements. PLoS One 7:e36433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuura H, Takeishi S, Kiatoka N, Sato C, Sueda K, Masuta C, Nabeta K (2012) Transportation of de novo synthesized jasmonoyl isoleucine in tomato. Phytochemistry 83:25–33

    Article  CAS  PubMed  Google Scholar 

  • Muramoto S, Matsubara Y, Mwenda CM, Koeduka T, Sakami T, Tani A, Matsui K (2015) Glutathionylation and reduction of methacroein in tomato plants account for its absorption from the vapor phase. Plant Physiol 169:1744–1754

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohgami S, Ono E, Horikawa M, Murata J, Totsuka K, Toyonaga H, Ohba Y, Dohra H, Asai T, Matsui K, Mizutani M, Watanabe N, Ohnishi T (2015) Volatile glycosylation in tea plants: sequential glycosylations for the biosynthesis of aroma β-primeverosides are catalyzed by two Camellia sinensis Glycosyltransferases. Plant Physiol 168:464–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otsuka M, Kenmoku H, Ogawa M, Okada K, Mitsuhashi W, Sassa T, Kamiya Y, Toyomasu T, Yamaguchi S (2004) Emission of ent-kaurene, a diterpenoid hydrocarbon precursor for gibberellins, into the headspace from plants. Plant Cell Physiol 45:1129–1138

    Article  CAS  PubMed  Google Scholar 

  • Pare PW, Tumlinson JH (1999) Plant volatiles as a defense against insect herbivores. Plant Physiol 121:325–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy GP (2012) Recent trends in the olfactory responses of insect natural enemies to plant volatiles. In: Witzany G, Baluška F (eds) Biocommunication of plants. Springer, Berlin, Heidelberg, pp 281–301

    Chapter  Google Scholar 

  • Rodríguez A, Alquézar B, Peña L (2013) Fruit aromas in mature fleshy fruits as signals of readiness for predation and seed dispersal. New Phytol 197:36–48

    Article  PubMed  Google Scholar 

  • Saito H, Oikawa T, Hamamoto S, Ishimaru Y, Kanamori-Sato M, Sasaki-Sekimoto Y, Utsumi T, Chen J, Kanno Y, Masuda S, Kamiya Y, Seo M, Uozumi N, Ueda M, Ohta H (2015) The jasmonate-responsive GTR1 transporter is required for gibberellins-mediated stamen development in Arabidopsis. Nat Commun 6:6095

    Article  PubMed  PubMed Central  Google Scholar 

  • Shiojiri K, Kishimoto K, Ozawa R, Kugimiya S, Ueashimo S, Arimura G, Horiuchi J, Nishioka T, Matsui K, Takabayashi J (2006) Changing green leaf volatile biosynthesis in plants: an approach for improving plant resistance against both herbivore and pathogens. Proc Natl Acad Sci USA 103:16672–16676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staswick PE, Tiryaki I (2004) The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16:2117–2127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugimoto K, Matsui K, Iijima Y, Akakabe Y, Muramoto S, Ozawa R, Uefune M, Sasaki R, Alamgir KM, Akitake S, Nobuke T, Galis I, Aoki K, Shibata D, Takabayashi J (2014) Intake and transformation to a glycoside of (Z)-3-hexenol from infested neighbors reveals a mode of plant odor reception and defense. Proc Natl Acad Sci USA 111:7144–7149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugimoto K, Matsui K, Takabayashi J (2015) Conversion of volatile alcohols into their glucosides in Arabidopsis. Commun Integr Biol 8:e992731

    Article  PubMed  PubMed Central  Google Scholar 

  • Svyatyna K, Jikumaru Y, Brendel R, Reichelt M, Mithöfer A, Takano M, Kamiya Y, Nick P, Riemann M (2014) Light induces jasmonate-isoleucine conjugation via OsJAR1-dependent and -independent pathways in rice. Plant Cell Environ 37:827–839

    Article  CAS  PubMed  Google Scholar 

  • Takabayashi J (2014) Infochemical webs and tritrophic interactions. eLS. Wiley, Chichester. doi:10.1002/9780470015902.a0021912

  • Takabayashi J, Dicke M (1996) Plant-carnivore mutualism through herbivore-induced carnivore attractants. Trends Plant Sci 1:109–113

    Article  Google Scholar 

  • Takabayashi J, Dicke M, Posthumus MA (1994) Volatile herbivore-induced terpenoids in plant–mite interactions: variation caused by biotic and abiotic factors. J Chem Ecol 20:1324–1354

    Google Scholar 

  • Tani A, Hewitt CN (2009) Uptake of aldehydes and ketones at typical indoor concentrations by houseplants. Environ Sci Technol 43:8338–8343

    Article  CAS  PubMed  Google Scholar 

  • Tani A, Tobe S, Shimizu S (2010) Uptake of methacrolein and methyl vinyl ketone by tree saplings and implications for forest atmosphere. Environ Sci Technol 44:7096–7101

    Article  CAS  PubMed  Google Scholar 

  • Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targes of the SFCCOI1 complex during jasmonate signaling. Nature 448:661–665

    Article  CAS  PubMed  Google Scholar 

  • Tikunov YM, de Vos RCH, González Paramás AM, Hall RD, Bovy AG (2010) A role for differential glycoconjugation in the emission of phenylpropanoid volatiles from tomato fruit discovered using a metabolic data fusion approach. Plant Physiol 152:55–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tikunov YM, Molthoff J, de Vos RCH, Beekwilder J, van Houwelingen A, van der Hooft JJJ, Nijenhuis de Vries M, Labrie CW, Verkerke W, van de Geest H, Zamora MV, Presa S, Rambla JL, Granell A, Hall RD, Bovy AG (2013) NON-SMOKY GLYCOSYLTRANSFERASE1 prevents the release of smoky aroma from tomato fruit. Plant Cell 25:3067–3078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valenta K, Burke RJ, Styler SA, Jackson DA, Melin AD, Lehman SM (2013) Colour and odour drive fruit selection and seed dispersal by mouse lemurs. Sci Rep 3:2424

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu J, Wang L, Baldwin IT (2008) Methyl jasmonate-eicited herbivore resistance: does MeJA function as a signal without being hydrolyzed to JA? Planta 227:1161–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yauk YK, Ged C, Wang MY, Matich AJ, Tessarotto L, Cooney JM, Chervin C, Atkinson RG (2014) Manipulation of flavor and aroma compound sequestration and release using a glycosyltransferase with specificity for terpene alcohols. Plant J 80:317–330

    Article  CAS  PubMed  Google Scholar 

  • Yoneya K, Takabayashi J (2014) Plant–plant communication mediated by airborne signals: ecological and plant physiological perspectives. Plant Biotechnol 31:409–416

    Article  CAS  Google Scholar 

  • Yoneya K, Ozawa R, Takabayashi J (2010) Specialist leaf beetle larvae use volatiles from willow leaves infested by conspecifics for reaggregation in a tree. J Chem Ecol 36:671–678

    Article  CAS  PubMed  Google Scholar 

  • Zebelo SA, Matsui K, Ozawa R, Maffei ME (2012) Plasma membrane potential depolarization and cytosolic calcium flux are early events involved in tomato (Solanum lycopersicum) plant-to-plant communication. Plant Sci 196:93–100

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junji Takabayashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sugimoto, K., Matsui, K., Takabayashi, J. (2016). Uptake and Conversion of Volatile Compounds in Plant–Plant Communication. In: Blande, J., Glinwood, R. (eds) Deciphering Chemical Language of Plant Communication. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-33498-1_13

Download citation

Publish with us

Policies and ethics