Skip to main content

Nanocrystalline Diamond: Deposition Routes and Clinical Applications

  • Chapter
  • First Online:
Surgical Tools and Medical Devices

Abstract

Diamond is one of the most advanced and most useful engineering materials in use today. The properties of synthetic diamond are very similar to that of single crystal diamond and it is well established that diamond has unique combinations of excellent physical, optical, chemical and biomedical properties. Typically, each application area for diamond requires the optimum properties of the material. The optimisation of diamond properties can only be achieved by operating on the microstructure, since it is almost impossible to alter diamond’s molecular structure or its chemical composition. This chapter discusses the use of nanocrystalline diamond for clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. May, P. W. (2000). Philosophical Transactions of the Royal Society of London A, 358, 473.

    Google Scholar 

  2. Ashfold, M. N., May, P. W., Rego, C. A., & Everitt, N. M. (1994). Chemical Society Reviews, 23.

    Google Scholar 

  3. Ali, N., Ahmed, W., Hassan, I. U., & Rego, C. A. (1998). Surface Engineering, 14(4), 292.

    Google Scholar 

  4. Ahmed, N. A. G. (1980). Journal of Physics E: Scientific Instruments, 13, 295.

    Google Scholar 

  5. Mattox, D. M. (1982). In Proceedings of 4th International Colloquium on Plasma & Sputtering, Nice, France (p. 187), Paris Societe Fracais du Vide.

    Google Scholar 

  6. Mattox, D. M. (1963). Film deposition using accelerated ions. Sandia Corporation, Report, SC-DR-28163.

    Google Scholar 

  7. Ahmed, W., & Meakin, D. B. (1986). Journal of Crystal Growth, 79, 394.

    Google Scholar 

  8. Kelly, P. J., Arnell, R. D., & Ahmed, W. (1993). Materials World, 161.

    Google Scholar 

  9. Fan, Q. H., Pereira, E., Davim, P., Gracio, J., & Tavares, C. J. (2000). Surface & Coatings Technology, 96, 111.

    Google Scholar 

  10. Ahmed, W., Ackroyd, C. M. J., Ahmed, E., & Sarwar, M. (1991–1998). Islamabad Journal of Science, 11-9(1–2), 29–34.

    Google Scholar 

  11. Gruen, D. M. (1999). Annual Review of Materials Science, 29, 211.

    Google Scholar 

  12. Zhou, D., Gruen, D. M., Qin, L. C., McCauley, T. G., & Krauss, A. R. (1998). Journal of Applied Physics, 84, 1981.

    Google Scholar 

  13. Sharda, T., Soga, T., Jimbo, T., & Umeno, M. (2001). Diamond and Related Materials, 10, 561.

    Google Scholar 

  14. Saito, S., Fujimori, N., Fukunaga, O., Kamo, M., Kobashi, K., & Yoshikawa, M. (1994). Advances in new diamond science and technology. Tokyo: MYU.

    Google Scholar 

  15. Hirabayashi, K., & Matsumoto, S. (1994). Journal of Applied Physics, 75, 1151.

    Google Scholar 

  16. Catledge, S. A., & Vohra, Y. K. (1999). Journal of Applied Physics, 86, 698.

    Google Scholar 

  17. Sharda, T., Umeno, M., Soga, T., & Jimbo, T. (2002). Applied Physics Letters, 80, 2880.

    Google Scholar 

  18. Zhu, W., Kochanski, G. P., & Jin, S. (1998). Science, 282, 1471.

    Google Scholar 

  19. Liu, J., Zhirnov, V. V., Mayers, A. F., Wojak, G. J., Choi, W. B., Hren, J. J., et al. (1995). Journal of Vacuum Science and Technology B, 13, 422.

    Google Scholar 

  20. Gohl, A., Alimova, A. N., Habermann, T., Mescheryakova, A. L., Nau, D., & MĂ¼ller, G. (1999). Journal of Vacuum Science and Technology B, 17, 670.

    Google Scholar 

  21. Wu, K., Wang, E. G., Chen, J., & Xu, N. S. (1999). Journal of Vacuum Science and Technology B, 17, 1059.

    Google Scholar 

  22. Wu, K., Wang, E. G., Cao, Z. X., Wang, Z. L., & Jiang, X. (2000). Journal of Applied Physics, 88, 2967.

    Google Scholar 

  23. Gu, C., Jiang, X., Jin, Z., & Wang, W. (2001). Journal of Vacuum Science and Technology B, 19, 962.

    Google Scholar 

  24. Groning, O., Nilsson, L.-O., Groning, P., & Schlapbach, L. (2001). Solid State Electronics, 45, 929.

    Google Scholar 

  25. Ong, T. P., & Chang, R. P. H. (1989). Applied Physics Letters, 55, 2063.

    Google Scholar 

  26. Wu, R. L. C., Rai, A. K., Garscadden, A., Lee, P., Desai, H. D., & Miyoshi, K. (1992). Journal of Applied Physics, 72, 110.

    Google Scholar 

  27. Erz, R., Dotter, W., Jung, D., & Ehrhardt, H. (1993). Diamond and Related Materials, 2, 449.

    Google Scholar 

  28. Zarrabian, M., Fourches-Coulon, N., Turban, G., Marhic, C., & Lancin, M. (1997). Applied Physics Letters, 70, 2535.

    Google Scholar 

  29. Bhusari, D. M., Yang, J. R., Wang, T. Y., Lin, S. T., Chen, K. H., & Chen, L. C. (1998). Solid State Communications, 107, 301.

    Google Scholar 

  30. Chen, K. H., Bhusari, D. M., Yang, J. R., Lin, S. T., Yang, T. Y., & Chen, L. C. (1998). Thin Solid Films, 332, 34.

    Google Scholar 

  31. Chen, L. C., Wang, T. Y., Yang, J. R., Chen, K. H., Bhusari, D. M., Chang, Y. K., et al. (2000). Diamond and Related Materials, 9, 877.

    Google Scholar 

  32. Chen, L. C., Kichambare, P. D., Chen, K. H., Wu, J.-J., Yang, J. R., & Lin, S. T. (2001). Journal of Applied Physics, 89, 753.

    Google Scholar 

  33. Yang, W. B., Lu, F. X., & Cao, Z. X. (2002). Journal of Applied Physics, 91, 10068.

    Google Scholar 

  34. Sharda, T., Soga, T., & Jimbo, T. (2003). Journal of Applied Physics, 93(101), 368.

    Google Scholar 

  35. Hirari, H., Kondo, K., Yoshizawa, N., & Shiraishi, M. (1994). Applied Physics Letters, 64, 1797.

    Google Scholar 

  36. Hirai, H., Kondo, K., Kim, M., Koinuma, H., Kurashima, K., & Bando, Y. (1997). Applied Physics Letters, 71, 3016.

    Google Scholar 

  37. Davanloo, R., Lee, T. J., Park, H., You, J. H., & Collins, C. B. (1993). Journal of Materials Research, 8, 3090.

    Google Scholar 

  38. Erdemir, A., Fenske, G. R., Krauss, A. R., Gruen, D. M., McCauley, T. G., & Csencsits, R. T. (1999). Surface & Coatings Technology, 90–91, 565.

    Google Scholar 

  39. Hogmark, S., Hollman, O., Alahelisten, A., & Hedenqvist, O. (1996). Wear, 200, 225.

    Google Scholar 

  40. Hollman, P., Wanstrand, O., & Hogmark, S. (1998). Diamond and Related Materials, 7, 1471.

    Google Scholar 

  41. Catledge, S. A., & Vohra, Y. K. (1998). Journal of Applied Physics, 84, 6469.

    Google Scholar 

  42. Yoshikawa, H., MoreI, C., & Koga, Y. (2001). Diamond and Related Materials, 10, 1588.

    Google Scholar 

  43. Davanloo, R., Lee, T. J., Jander, D. R., Park, H., You, J. H., & Co1lins, C. B. (1992). Journal of Applied Physics, 71, 1446.

    Google Scholar 

  44. DavanIoo, R., Collins, C. B., & Koivusaari, K. J. (1999). Journal of Materials Research, 14, 3474.

    Google Scholar 

  45. Toprani, N., Catledge, S. A., Vohra, Y. K., & Thompson, R. (2000). Journal of Materials Research, 15, 1052.

    Google Scholar 

  46. Bi, B., Huang, W. S., Asmussen, J., & Golding, B. (2002). Diamond and Related Materials, 11, 677.

    Google Scholar 

  47. Krauss, A. R., Auciello, O., Gruen, D. M., Jayatissa, A., Sumant, A., Tucek, J., et al. (2001). Diamond and Related Materials, 10, 1952.

    Google Scholar 

  48. Butler, J. E., Hsu, D. S. Y., Houston, B. H., Liu, X., Ignola, J., Feygelson, T., et al. (2002) Paper 6.2. Presented at the 8th International Conference New Diamond Science and Technology 2002. The University of Melbourne, Australia. The complete presentation is available online at http://www.conferences.unimelb.edu.au/icndst-8/presenta-tions.htm

  49. Sekaric, L., Parpia, J. M., Craighead, H. G., Feygelson, T., Houston, B. H., & Butler, J. E. (2002). Applied Physics Letters, 81, 4455.

    Google Scholar 

  50. Lee, J., Hong, B., Messier, R., & Collins, R. W. (1996). Applied Physics Letters, 69, 1716.

    Google Scholar 

  51. Lee, J., Collins, R. W., Messier, R., & Strausser, Y. E. (1997). Applied Physics Letters, 70, 1527.

    Google Scholar 

  52. Sharda, T., Umeno, M., Soga, T., & Jimbo, T. (2000). Applied Physics Letters, 77, 4304.

    Google Scholar 

  53. Gu, C. Z., & Jiang, X. (2000). Journal of Applied Physics, 88, 1788.

    Google Scholar 

  54. Jiang, X., & Jia, C. L. (2002). Applied Physics Letters, 80, 2269.

    Google Scholar 

  55. Teu, K., Ito, H., Hori, M., Takeo, T., & Goto, T. (2000). Journal of Applied Physics, 87, 4572.

    Google Scholar 

  56. Bhusari, D. M., Yang, J. R., Wang, T. Y., Chen, K. H., Lin, S. T., & Chen, L. C. (1998). Journal of Materials Research, 13(7), 1769–1773.

    Google Scholar 

  57. Michler, J., Laufer, S., Seehofer, H., Blank, E., Haubner, R., & Lux, B. (1999). Proceedings of 10th International Conference on Diamond and Diamond-like Materials, Prague, Czech Republic, September 9–17, paper 5.231.

    Google Scholar 

  58. Heiman, A., Gouzman, I., Christiansen, S. H., Strunk, H. P., Comtet, G., Hellner, L., et al. (2001). Journal of Applied Physics, 89, 2622.

    Google Scholar 

  59. Jiang, N., Kujime, S., Ota, I., Inaoka, T., Shintani, Y., Makita, H., et al. (2000). Journal of Crystal Growth, 218, 265.

    Google Scholar 

  60. Xin, H. W., Zhang, Z. M., Ling, X., Xi, Z. L., Shen, H. S., Dai, Y. B., et al. (2002). Diamond and Related Materials, 11, 228.

    Google Scholar 

  61. Konov, V. L., Smolin, A. A., Ralchenko, V. G., Pimenov, S. M., Obraztsova, E. D., Loubnin, E. N., et al. (1995). Diamond and Related Materials, 4, 1073.

    Google Scholar 

  62. Nistor, L. C., Landuyt, J. V., Ralchenko, V. G., Obraztsova, E. D., & Smolin, A. A. (1997). Diamond and Related Materials, 6, 159.

    Google Scholar 

  63. Lin, T., Yu, Y., Wee, T. S., Shen, Z. X., & Loh, K. P. (2000). Applied Physics Letters, 77, 2692.

    Google Scholar 

  64. Yang, T.-S., Lai, J.-Y., Cheng, C.-L., & Wong, M.-S. (2001). Diamond and Related Materials, 10, 2161.

    Google Scholar 

  65. Amaratunga, G., Putnis, A., Clay, K., & Milne, W. (1989). Applied Physics Letters, 55, 634.

    Google Scholar 

  66. Amaratunga, G. A. J., Silva, S. R. P., & McKenzie, D. A. (1991). Journal of Applied Physics, 70, 5374.

    Google Scholar 

  67. Gruen, D. M., Shengzhong, L., Krauss, A. R., Luo, J., & Pan, X. (1994). Applied Physics Letters, 64(9), 1502.

    Google Scholar 

  68. Zhou, D., McCauley, T. G., Qin, L. C., Krauss, A. R., & Gruen, D. M. (1998). Journal of Applied Physics, 83(1), 540.

    Google Scholar 

  69. Gruen, D. M. (1999). Annual Review of Materials Science, 29, 211.

    Google Scholar 

  70. McCauley, T. M., Gruen, D. M., & Krauss, A. R. (1998). Applied Physics Letters, 73(9), 1646.

    Google Scholar 

  71. Gruen, D. M., Redfem, P. C., Homer, D. A., Zapol, P., & Curtiss, L. A. (1999). Journal of Physical Chemistry, 103, 5459.

    Google Scholar 

  72. Gruen, D. M., Pan, X., Krauss, A. R., Liu, S., Luo, J., & Foster, C. M. (1994). Journal of Vacuum Science and Technology A, 9, 1491.

    Google Scholar 

  73. Zhou, D., Krauss, A. R., Qin, L. C., McCauley, T. G., Gruen, D. M., Corrigan, T. D., & Chang, R. P. H. (1997). Journal of Applied Physics, 82, 4546.

    Google Scholar 

  74. Zhou, D., McCauley, T. G., Qin, L. C., Krauss, A. R., & Gruen, D. M. (1998). Journal of Applied Physics, 83, 540.

    Google Scholar 

  75. Bhattacharyya, S., Auciello, O., Birrel, J., Carlisle, J. A., Curtiss, L. A., Goyette, A. N., et al. (2001). Applied Physics Letters, 79, 1441.

    Google Scholar 

  76. Zhou, D., Krauss, A. R., Qin, L. C., McCauley, T. G., Gruen, D. M., Corrigan, T. D., et al. (1997). Journal of Applied Physics, 82(9), 4546.

    Google Scholar 

  77. Sun, X. S., Wang, N., Zhang, W. J., Woo, H. K., Han, X. D., Bello, I., et al. (1999). Journal of Materials Research, 14(8), 3204.

    Google Scholar 

  78. Bhusari, D. M., Yang, J. R., Wang, T. Y., Chen, K. H., Lin, S. T., & Chen, L. C. (1998). Materials Letters, 36, 279.

    Google Scholar 

  79. Xu, N. S., Chen, J., Feng, Y. T., & Deng, S. Z. (2000). Journal of Vacuum Science and Technology B, 18, 1048.

    Google Scholar 

  80. Maillard-Schaller, E., Kuettel, O. M., Diederich, L., Schlapbach, L., Zhirnov, V. V., & Belobrov, P. I. (1999). Diamond and Related Materials, 8, 805.

    Google Scholar 

  81. Yagi, H., Ide, T., Toyota, H., & Mori, Y. (1998). Journal of Materials Research, 13(6), 1724.

    Google Scholar 

  82. Lee, J., Hong, B., Messier, R., & Collins, R. W. (1996). Applied Physics Letters, 69(9), 1716.

    Google Scholar 

  83. Xu, T., Yang, S., Lu, J., Xue, Q., Li, J., Guo, W., et al. (2001). Diamond and Related Materials, 10, 1441.

    Google Scholar 

  84. McGinnis, S. P., Kelly, M. A., Hagstrom, S. B., & Alvis, R. L. (1996). Journal of Applied Physics, 79(1), 170.

    Google Scholar 

  85. Yoshikawa, H., Morel, C., & Koga, Y. (2001). Diamond and Related Materials, 10, 1588.

    Google Scholar 

  86. Chen, L. C., Kichambare, P. D., Chen, K. H., Wu, J.-J., Yang, J. R., & Lin, S. T. (2001). Journal of Applied Physics, 89(1), 753.

    Google Scholar 

  87. Mitura, S., Mitura, A., Niedzielski, P., & Couvrat, P. (1999). Chaos. Solitons & Fractals, 10(9), 2165.

    Google Scholar 

  88. Sharda, T., Umeno, M., Soga, T., & Jimbo, T. (2000). Applied Physics Letters, 77(26), 4304.

    Google Scholar 

  89. Sharda, T., Soga, T., Jimbo, T., & Umeno, M. (2000). Diamond and Related Materials, 9, 1331.

    Google Scholar 

  90. Sharda, T., Soga, T., Jimbo, T., & Umeno, M. (2001). Diamond and Related Materials, 10, 1592.

    Google Scholar 

  91. Beake, B. D., Hassan, I. U., Rego, C. A., & Ahmed, W. (2000). Diamond and Related Materials, 9, 1421.

    Google Scholar 

  92. Kundu, S. N., Basu, M., Maity, A. B., Chaudhuri, S., & Pal, A. K. (1997). Materials Letters, 31, 303.

    Google Scholar 

  93. Zhou, X. T., Li, Q., Meng, F. Y., Bello, L., Lee, C. S., Lee, S. T., et al. (2002). Applied Physics Letters, 80, 3307.

    Google Scholar 

  94. Groning, O., Kuttel, O. M., Groning, P., & Schlapbach, L. (1999). Journal of Vacuum Science and Technology B, 17, 1970.

    Google Scholar 

  95. Yang, T. S., Lai, J. Y., Wong, M. S., & Cheng, C. L. (2002). Journal of Applied Physics, 92, 2133.

    Google Scholar 

  96. Yang, T. S., Lai, J. Y., Wong, M. S., & Cheng, C. L. (2002). Journal of Applied Physics, 92, 499.

    Google Scholar 

  97. Zhou, X. T., Li, Q., Meng, R. Y.. Bello, I.. Lee, C. S.. Lee, S. T., et al. (2002). Paper P1.01.11. Presented at the Eighth International Conference New Diamond Science and Technology. The University of Melbourne, Australia.

    Google Scholar 

  98. Jiang, N., Sugimoto, K., Nishimura, K., Sbintani, Y., & Hiraki, A. (2002). Journal of Crystal Growth, 242, 362.

    Google Scholar 

  99. Prawer, S., Peng, J. L., Orwa, J. O., McCa11um, J. C., Jamieson, D. N., & Bursill, L. A. (2000). Physical Review B, 62, R16360.

    Google Scholar 

  100. Wang, Z., Yu, G., Yu, L., Zhu, R., Zhu, D., & Xu, H. (2002). Journal of Applied Physics, 91, 3480.

    Google Scholar 

  101. Yusa, H. (2002). Diamond and Related Materials, 11, 87.

    MathSciNet  Google Scholar 

  102. Gogotsi, Y., Welz, S., Ersoy, D. A., & McNallan, M. J. (2001). Nature, 411, 283.

    Google Scholar 

  103. Malshe, A. P., Park, B. S., Brown, W. D., & Naseem, H. A. (1999). Diamond and Related Materials, 8, 1198.

    Google Scholar 

  104. Tokura, C., Yang, F., & Yoshikawa, M. (1992). Thin Solid Films, 29, 49.

    Google Scholar 

  105. Zhao, T., Grogan, D. F., Bovard, B. G., & Macleod, H. A. (1992). Applied Optics, 31, 1483.

    Google Scholar 

  106. Hirata, A., Tokura, H., & Yoshikawa, M. (1992). Thin Solid Films, 29, 43.

    Google Scholar 

  107. Lee, D. G., & Singh, R. K. (1995). Beam-solid interactions for materials synthesis and characterization. In D. E. Luzzi, T. F. Heinz, M. Iwaki, & D. C. Jacobson (Eds.), Materials Research Society Symposium Proceedings, Pittsburgh, PA (p. 699).

    Google Scholar 

  108. Wolter, S. D., Okuzumi, F., Prater, J. T., & Siter, Z. (2001). Physical Status Solidi(a), 186(2), 331.

    Google Scholar 

  109. Hassan, I. U., Brewer, N., Rego, C. A., Ahmed, W., Beake, B. D., Ali, N., et al. (2002). In J. Gracio, P. Davim, Q. H. Fan, & N. Ali (Eds.), Proceedings of New Developments on Tribology: Theoretical Analysis and Application to Industrial Processes (p. 153). University of Aveiro, Portugal, May 2002. ISBN 972-789-059-8.

    Google Scholar 

  110. Gilbert, D. R., Lee, D.-G., & Singh, R. K. (1998). Journal of Materials Research, 13(7), 1735.

    Google Scholar 

  111. Silva, F., Gicquel, A., Chiron, A., & Achard, J. (2000). Diamond and Related Materials, 9, 1965.

    Google Scholar 

  112. Gicquel, A., Hassouni, K., & Silva, F. (2000). Journal of the Electrochemical Society, 14716, 2218.

    Google Scholar 

  113. Zhu, W., Badzian, A. R., & Messier, R. (1990). Diamond Opt. 111, San Diego, California. In: SPIE (p. 187). The International Society for Optics Engineering.

    Google Scholar 

  114. Chen, C. F., & Hong, T. M. (1993). Surface & Coatings Technology, 5, 143.

    Google Scholar 

  115. Kumar, S., Dixit, P. N., Sarangi, D., & Bhattacharyya, R. (1999). Journal of Applied Physics, 85, 3866.

    Google Scholar 

  116. Li, X., Hayashi, Y., & Nishino, S. (1997). Japanese Journal of Physics, 36, 5197.

    Google Scholar 

  117. Ali, N., Neto, V. F., Sen, M., Misra, D. S., Cabral, G., Ogwu, A. A., et al. (2004). Thin Solid Films, 469–470(22), 154.

    Google Scholar 

  118. Hayashi, Y., Drawl, W., & Messier, R. (1992). Japanese Journal of Applied Physics, 31, L194.

    Google Scholar 

  119. Ali, N., Neto, V. F., & Gracio, J. (2003). Journal of Materials Research, 18(2), 296–304.

    Google Scholar 

  120. Ali, N., Kousar, Y., Fan, Q. H., Neto, V. F., & Gracio, J. (2003). Journal of Materials Science Letters, 22, 1039–1042.

    Google Scholar 

  121. Field, J. E. (Ed.). (1992). Properties of natural and synthetic diamond (p. 667). San Diego, CA: Academic Press.

    Google Scholar 

  122. Angus, J. C., & Hayman, C. C. (1988). Science, 241, 913.

    Google Scholar 

  123. Ahmed, W., Ali, N., Hassan, I. U., & Penlington, R. (1998). Finishing, 1, 22.

    Google Scholar 

  124. Barton, K., Campbell, A., Chinn, J. A., Griffin, C. D., Anderson, D. H., Klein, K., et al. Biomedical Engineering Society (BMES) Bulletin, 25(1), 3.

    Google Scholar 

  125. Goodman, S. L., Tweden, K. S., & Albrecht, R. M. (1996). Journal of Biomedical Materials Research, 32, 249–258.

    Google Scholar 

  126. Cui, F. Z., & Li, D. J. (2000). Surface & Coatings Technology, 131, 481–487.

    Google Scholar 

  127. McLaughlin, J., Meenan, B., Maguire, P., & Jamieson, N. (1996). Diamond and Related Materials, 8, 486–491.

    Google Scholar 

  128. Jones, M. I., McColl, I. R., Grant, D. M., Parker, K. G., & Parker, T. L. (1999). Diamond and Related Materials, 8, 457–462.

    Google Scholar 

  129. Thomson, A., Law, F. G., Rushton, N., & Franks, J. (1991). Biomaterials, 9(1), 37.

    Google Scholar 

  130. Dion, I., Roquey, C. H., Baudet, E., Basse, B., & More, N. (1993). BioMedical Materials and Engineering, 3, 51.

    Google Scholar 

  131. Yang, P., Huang, N., Leng, Y. X., Chen, J. Y., Sun, H., Wang, J., et al. (2002). Surface & Coatings Technology, 156, 284–288.

    Google Scholar 

  132. Chen, J. Y., Leng, Y. X., Tian, X. B., Wang, L. P., Huang, N., Chuan, P. K., et al. (2002). Biomaterials, 23, 2545–2552.

    Google Scholar 

  133. Leng, Y. X., Sun, H., Yang, P., Chen, J. Y., Wang, J., Wan, G. J., et al. (2001). Thin Solid Films, 398–399, 471–475.

    Google Scholar 

  134. Leng, Y. X., Yang, P., Chen, J. Y., Sun, H., Wang, J., Wang, G. J., et al. (2001). Surface & Coatings Technology, 138, 296–300.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Jackson .

Editor information

Editors and Affiliations

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sein, H. et al. (2016). Nanocrystalline Diamond: Deposition Routes and Clinical Applications. In: Ahmed, W., Jackson, M. (eds) Surgical Tools and Medical Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-33489-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33489-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33487-5

  • Online ISBN: 978-3-319-33489-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics