Skip to main content

Surface Engineering of Artificial Heart Valves to Using Modified Diamond-Like Coatings

  • Chapter
  • First Online:
Book cover Surgical Tools and Medical Devices

Abstract

There are two types of artificial heart valves, namely, (i) biological valves and (ii) mechanical valves. biological heart valves are made from tissue taken from animals or human cadavers. They are treated with preservatives and sterilized for human implantation. On the other hand, mechanical heart valves are made of man-made materials. The advantage of mechanical valves over biological valves is that they normally last for a comparatively longer lifetime. The biological valves exhibit a shorter lifetime and tend to wear out with time in service. This chapter discusses mechanical heart valves and highlights the underlying problems faced with biomaterials used in the manufacture of such valves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Barton, K., Campbell, A., Chinn, J. A., Griffin, C. D., Anderson, D. H., Klein, K., et al. (2001). Biomedical Engineering Society (BMES) Bulletin, 25(1), 3.

    Google Scholar 

  2. Hufnagel, C. A., & Harvey, W. P. (1953). Bulletin of Georgetown University Medical Center, 6, 60–63.

    Google Scholar 

  3. Gott, V. L., Alejo, D. E., & Cameron, D. E. (2003). The Annals of Thoracic Surgery, 76, S2230–S2239.

    Article  Google Scholar 

  4. Murray, G. (1956). Angiology, 7, 466.

    Article  Google Scholar 

  5. Braunwald, N. S., Cooper, T., & Morow, A. G. (1960). Journal of Thoracic and Cardiovascular Surgery, 40, 1–11.

    Google Scholar 

  6. Bahnson, H. T., Spencer, F. C., Busse, E. F. G., & Davis, F. W, Jr. (1960). Annals of Surgery, 152, 494.

    Google Scholar 

  7. Roe, B. B., Owsley, J. W., & Boudoures, P. C. (1958). Journal of Thoracic and Cardiovascular Surgery, 36, 563–570.

    Google Scholar 

  8. Roe, B. B. (1969). Journal of Thoracic and Cardiovascular Surgery, 58, 59–61.

    Google Scholar 

  9. Braunwald, N. S., & Morrow, A. G. (1965). Journal of Thoracic and Cardiovascular Surgery, 49, 485–496.

    Google Scholar 

  10. DeWall, R. A., Qasim, N., & Carr, L. (2000). The Annals of Thoracic Surgery; 69, 1612–1621.

    Article  Google Scholar 

  11. Gott, V. L., Daggett, R. L., Whiffen, J. D., et al. (1964). Journal of Thoracic and Cardiovascular Surgery, 48, 713–725.

    Google Scholar 

  12. Cruz, A. B., Kaster, R. L., Simmons, R. L., & Lillehei, C. W. (1965). Surgery, 58, 995–998.

    Google Scholar 

  13. Wada, J., Lomatsu,S., Ikeda, K., et al. (1969). A new hingeless valve. In L. A. Brewer (Eds.), Prosthetic heart valves (pp. 304–314). Springfield: Charles C. Thomas.

    Google Scholar 

  14. Björk, V. O. (1969). Journal of Thoracic and Cardiovascular Surgery, 3, 1–10.

    Google Scholar 

  15. Carmen, R., & Mutha, S. C. (1972). Journal of Biomedical Materials Research, 6, 327–346.

    Article  Google Scholar 

  16. Björk, V. O. (1974). The surgical treatment of aortic valve disease. Ingelhelm: C.H. Boehringer Sohn.

    Google Scholar 

  17. Messmer, B. J., Rothlin, M., & Senning, A. (1973). Journal of Thoracic and Cardiovascular Surgery, 65, 386–390.

    Google Scholar 

  18. Gott, V. L., Whiffen, J. D., & Valiathan, S. M. (1968). Annals of the New York Academy of Sciences, 146, 21–29.

    Article  Google Scholar 

  19. Scott, S. M., Sethi, G. K., Bridgman, A. H., & Takaro, T. (1976). The Annals of Thoracic Surgery, 21, 483–486.

    Article  Google Scholar 

  20. Beall, A. C., Jr., Morris, G. C., Jr., Noon, G. P., et al. (1973). The Annals of Thoracic Surgery, 15, 25–34.

    Article  Google Scholar 

  21. Cedars-Sinai Medical center Prosthetic heart valve information, Division of Cardiology: http://www.csmc.edu/pdf/Heart_Valves.pdf

  22. Lillehei, C. W., Kaster, R. L., Coleman, M., & Bloch, J. H. (1974). NY State Journal of Medicine, 74, 1426–1438.

    Google Scholar 

  23. FDA panel meeting for approval of the OmniCarbon®valve, PMA # P830039, 1998.

    Google Scholar 

  24. di Summa, M., Poletti, G., Breno, L., et al. (2002). The Journal of Heart Valve Disease, 11, 517–523

    Google Scholar 

  25. Starek, P. J. K., McLaurin, L. P., Wilcox, B. R., & Murry, G. F. (1976). THe Annals of Thoracic Surgery, 22, 362–368.

    Article  Google Scholar 

  26. Starek, P. J. K., Beaudet, R. L., & Hall, V. K. (1987). The medtronic-hall valve:development and clinical expe-rience. In F. A. Crawford (Ed.), Cardiac surgery current heart valve prosthesis (pp. 223–236). Hanley & Belfus, Philadelphia.

    Google Scholar 

  27. Food and Drug Administration Enforcement Report, September 7, (1988).

    Google Scholar 

  28. Young, W. P., Daggett, R. L., & Gott, V. L. (1969). Long-term follow-up of patients with a hinged leaflet prosthetic heart valve. In L. A. Brewer (Ed.), Prosthetic heart valves (pp. 622–632). Springfield, IL: Charles C. Thomas.

    Google Scholar 

  29. Kalke, B. R. (1973). Evaluation of a double-leaflet prosthetic heart valve of a new design for clinical use. Ph.D. thesis, University of Minnesota.

    Google Scholar 

  30. Lessons of Björk-Shiley Heart Valve Failure. www.me.utexas.edu/~uer/heartvalves/shiley.html

  31. Klawitter, J. J. (1985). Design and in vitro testing of the duromedics bileaflet valve. In First International Hemex Symposium on the Duromedics Bileaflet Valves.

    Google Scholar 

  32. Richard, R., Beavan, A., & Strzepa, P. (1994). Journal of Heart Valve Disease, 3, S94–S101.

    Google Scholar 

  33. Craver, J. (1999) Carbomedics Prosthetic Heart Valve (tm). European Journal Cardio-Thoracic Surgery, 15(Suppl. 1) S3–Sll.

    Google Scholar 

  34. Prosthetic heart valves: History of mechanical heart valve replacement: BMES Bulletin, 24(4).

    Google Scholar 

  35. Campbell, A., Baldwin, T., Peterson, G., Bryant, J., & Ryder, K. (1996). Journal of Heart Valve Disease, 5, S124–S132.

    Google Scholar 

  36. Lung, B., Haghigat, T., Garbaz, E., et al. (1999) Incidence and predictors of prosthetic thrombosis on mitralbileaflet prostheses during the postoperative period. In Congress of the European Society of Cardiology, August 1999.

    Google Scholar 

  37. Bodnar, E., Arru, P., Butchard, E. G., et al. (1996). Panel discussion. Journal of Heart Valve Disease, 5, S148.

    Google Scholar 

  38. Gross, J., Shu, M., Dai, F., Ellis, J., & Yoganathan, A. (1996). Journal of Heart Valve Disease, 5, 581–590.

    Google Scholar 

  39. http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfTopic/mda/mda-cardio.cfm?topic=421

  40. Spronk, H. M. H., van der Voort, D., & ten Cate, H. (2004). Thrombosis Journal, 2, 12. doi:10.1186/1477-9560-2-12

    Article  Google Scholar 

  41. William, D. F. (Ed.). Definitions in biomaterials. London: Elsevier.

    Google Scholar 

  42. Teoh, S. H. (2000). International Journal of Fatigue, 22, 825–837.

    Article  Google Scholar 

  43. Klinger, A., Steinberg, D., Kohavi, D., & Sela, M. N. (1997). Journal of Biomedical Materials Research, 36, 387–392.

    Article  Google Scholar 

  44. BMEn 5001-“cardiovascular” Applications of biomaterials; November 25, 1998-W. Gleason.

    Google Scholar 

  45. http://www.biomed.metu.edu.tr/courses/term_papers/artif-heart-valves_erol.htm

  46. Soltys-Robitaille, C. E., Ammon, D. M., Jr., Valint, P. L., Jr., & Grobe III, G. L. (2001). Biomaterials, 22, 3257–3260.

    Article  Google Scholar 

  47. Pesakova, V., Klezl, Z., Balik, K., & Adam, M. (2000). Journal of Material Science: Materials in Medicine, 11(12), 793–798.

    Google Scholar 

  48. Bruinsma, G. M., Van der Mei, H. C., & Busscher, H. J. (2001). Biomaterials, 22(3217–322), 4.

    Google Scholar 

  49. Ahluwalia, A., Basta, G., Chiellini, F., Ricci, D., & Vozzi, G. (2001). Journal of Material Science: Materials in Medicine, 12(7), 613–619.

    Google Scholar 

  50. Bowlin, G. L., & Rittger, S. E. (1997). Cell Transplantation, 6(6), 623–629.

    Google Scholar 

  51. Van Wachem, P. B., Schakenraad, J. M., Feijen, J., Beugeling, T., Van Aken, W. G., Blauuw, E. H., et al. (1989). Biomaterials, 10, 532–539.

    Article  Google Scholar 

  52. Bruck, S. D. (1975). Polymer, 16, 25.

    Article  Google Scholar 

  53. Bruck, S. D. (1973). Nature, 243, 416–417.

    Article  Google Scholar 

  54. Bruck, S. D. (1967). Journal of Polymer Science, C17, 169–185.

    Google Scholar 

  55. Boldz, A., & Schaldach, M. (1990). Artificial Organs, 14(4), 260–269.

    Article  Google Scholar 

  56. Chen, J. Y., Wang, L. P., Fu, K. Y., Huang, N., Leng, Y., Leng, Y. X., et al. (2002). Surface & Coatings Technology, 156, 289–294.

    Article  Google Scholar 

  57. http://greenfield.fortunecity.com/rattler/46/endothelium.htm

  58. http://teaching.anhb.uwa.edu.au/mb140/MoreAbout/Endothel.htm

  59. Gordon, J. L (1986). In J. P., Cazenave, J. A. Davies, M. D. Kazatchkine, & W. G. van Aken (Eds.), Blood-surface interactions: Biological principles underlying hemocompatibility with artificial materials (p. 5). London: Elsevier Science Publishers (Biomedical Division).

    Google Scholar 

  60. Williams, S. (1994). Cell Transplantation, 4, 401–410.

    Article  Google Scholar 

  61. Horbett, T. (1994). Colloids and Surface B: Biointerfaces, 2, 225–240.

    Article  Google Scholar 

  62. Tianen, Veli-Matti. (2001). Diamond and Related Materials, 10, 153–160.

    Article  Google Scholar 

  63. Grill, A., & Meyerson. (1994). Development and status of diamondlike carbon. In K. E. Spear & J. P Dismukes (Eds.), Synthetic diamond; emerging CVD science and technology. New York: Wiley.

    Google Scholar 

  64. Schroeder, A., Francz, G., Bruinink, A., Hauert, R., Mayer, J., & Wintermantel, E. (2000). Biomaterials, 21(5), 449–456.

    Article  Google Scholar 

  65. Hauert, R., Knoblauch-Meyer, L., Francz, G., Schroeder, A., & Wintermantel, E. (1999). Surface & Coatings Technology, 120–121, 291–296.

    Article  Google Scholar 

  66. Hauert, R., Muller, U., Francz, G., et al. (1997). Thin Solid Films, 308–309, 191–194.

    Article  Google Scholar 

  67. Dorner-Reisel, A., Schurer, C., Nischan, C., Seidel, O., & Muller, E. (2002). Thin Solid Films, 420–421, 263–268.

    Article  Google Scholar 

  68. Hauert, R., & Muller, U. (2003). Diamond and Related Materials, 12, 171–177.

    Article  Google Scholar 

  69. Huang, N., Yang, P., Leng, Y. X., Wang, J., Chen, J. Y., Sun, H., et al. (2004). Surface modification for controlling the blood-materials interface. In Invited report on 6th Asia Symposium on Biomedical Materials, Chengdu, China. Published in Key Engineering Materials, July 20–23, 2004. http://www.paper.edu.cn/scholar/download.jsp?file=huangnan-6

  70. Leng, Y. X., Huang, N., et al. (2003). Surface Science, 531, 177.

    Article  Google Scholar 

  71. Yang, P., Chen, J. Y., Leng, Y. X., Sun, H., Huang, N., & Chu, P. K. (2003) 7th International Workshop on Plasma Based Ion Implantation, San Antonio, USA, September 16–20, 2003.

    Google Scholar 

  72. Huang, N., Yang, P., Leng, Y. X., Wang, J., Sun, H., Chen, J. Y., et al. (2004). Surface & Coatings Technology, 186, 218–226.

    Google Scholar 

  73. Yang, P., Kwok, S. C. H., Chu, P. K., Leng, Y. X., Chen, J. Y., Wang, J., et al. (2003). Nuclear Instruments and Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms, 206, 721.

    Google Scholar 

  74. Jones, M. I., McColl, I. R., Grant, D. M., Parker, K. G., & Parker, T. L. (1999). Diamond and Related Materials, 8, 457–462.

    Article  Google Scholar 

  75. Jones, M. I., McColl, I. R., Grant, D. M., Parker, K. G., & Parker, T. L. (2000). Journal of Biomedical Materials Research, 52(2), 413–421.

    Article  Google Scholar 

  76. Dion, I., Roques, X., Baquey, C., Baudet, E., Basse Cathalinat, B., & More, N. (1993). Bio-Medical Materials and Engineering, 3y1, 51–55.

    Google Scholar 

  77. Cui, F. Z., & Li, D. J. (2000). Surface & Coatings Technology, 131, 481–487.

    Article  Google Scholar 

  78. Gutensohn, K., Beythien, C., Bau, J., Fenner, T., Grewe, P., Koester, R., et al. (2000). Thrombosis Research, 99, 577–585.

    Article  Google Scholar 

  79. Alanazi, A., Nojiri, C., Noguchi, T., Kido, T., Komatsu, Y., Kirakuri, K., et al. (2000). ASAIO Journal, 46, 440–443.

    Article  Google Scholar 

  80. Thomson, L. A., Law, F. C., Rushton, N., & Franks, J. (1991). Biomaterials, 12, 37.

    Article  Google Scholar 

  81. Allen, M., Law, F., & Rushton, N. (1994). Clin. Mater., 17, 1.

    Article  Google Scholar 

  82. De Scheerder, I., Szilard, M., Yanming, H., et al. (2000). J. Invasive Cardiol., 12(8), 389–394.

    Google Scholar 

  83. Schroeder, A., Francz, G., Bruinink, A., Hauert, R., Mayer, J., & Wintermantel, E. (2000). Biomaterials, 21(5), 449–456.

    Article  Google Scholar 

  84. Francz, G., Schroeder, A., & Hauert, R. (1999). Surface and Interface Analysis, 28, 3.

    Article  Google Scholar 

  85. Hauert, R., Knoblauch-Meyer, L., Francz, G., Schroeder, A., & Wintermantel, E. (1999). Surface & Coatings Technology, 120–121, 291–296.

    Article  Google Scholar 

  86. Hauert, R., Muller, U., Francz, G., et al. (1997). Thin Solid Films, 308–309, 191–194.

    Article  Google Scholar 

  87. Schroeder, A. (1999). Ph.D. Thesis, Dissertation Nr. 13079, ETH Zurich.

    Google Scholar 

  88. Dorner-Reisel, A., Schurer, C., Nischan, C., Seidel, O., & Muller, E. (2002). Thin Solid Films, 420–421, 263–268.

    Article  Google Scholar 

  89. Yang, P., Huang, N., Leng, Y. X., Chen, J. Y., Sun, H., Wang, J., et al. (2002). Surface & Coatings Technology, 156, 284–288.

    Article  Google Scholar 

  90. Chen, J. Y., Leng, Y. X., Tian, X. B., Wang, L. P., & Huang, N. (2002). P. K. Chu an P. Yang. Biomaterials, 23, 2545–2552.

    Article  Google Scholar 

  91. Leng, Y. X., Sun, H., Yang, P., Chen, J. Y., Wang, J., Wan, G. J., et al. (2001). Thin Solid Films, 398–399, 471–475.

    Article  Google Scholar 

  92. Leng, Y. X., Yang, P., Chen, J. Y., Sun, H., Wang, J., Wang, G. J., et al. (2001). Surface & Coatings Technology, 138, 296–300.

    Article  Google Scholar 

  93. Li, J. (1993). Biomaterials, 14, 229.

    Article  Google Scholar 

  94. Adjaottor, A. A., Ma, E., & Meletis, E. I. (1997). Surface & Coatings Technology, 89(3), 197–203.

    Article  Google Scholar 

  95. Grinnell, F. (1978). International Review of Cytology, 53, 65–144.

    Article  Google Scholar 

  96. Ogwu, A. A., Lamberton, R. W., Morley, S., Maguire, P., & McLaughlin, J. (1999). Physica B, 269, 335–344.

    Article  Google Scholar 

  97. Dementjev, A. P., Petukhov, M. N., & Baranov, A. M. (1998). Diamond and Related Materials, 7, 1534–1538.

    Article  Google Scholar 

  98. Grill, A., Meyerson, B., Patel, V., Reimer, J. A., & Petrich, M. A. (1987). Journal of Applied Physics, 6, 2874.

    Article  Google Scholar 

  99. Constant, L. (1997). Le Normand. Diamond and Related Materials, 6, 664–667.

    Article  Google Scholar 

  100. Baker, M. A., & Hammer, P. (1997). Surface and Interface Analysis, 25, 629–642.

    Article  Google Scholar 

  101. Grinnell, F. (1978). International Review of Cytology, 53, 65–144.

    Article  Google Scholar 

  102. Magill, D. P., Ogwu A. A., McLaughlin J. A. D., & Maguire P. D. (2001). Journal of Vaccum Science and Technology A, 19(5), 2456–2462.

    Google Scholar 

  103. Hadjaj, A., Cabarrocas, R. I., & Equar, B. (1997). Philosophical Magazine B, 76, 941.

    Article  Google Scholar 

  104. Hadjaj, A., Favre, M., Equer, B., & Cabaroccas, R. I. (1998). Solar Energy Materials and Solar Cells, 51, 145–153.

    Article  Google Scholar 

  105. Attard, G., & Barnes, C. (1998). Surfaces (pp. 64–65). Oxford: Oxford University Press.

    Google Scholar 

  106. Boldz, A., & Schaldach, M. (1990). Artificial Organs, 14(4), 260–269.

    Article  Google Scholar 

  107. Wan, H., Williams, R. L., Doherty, P. J., & Williams, D. F. (1994). Journal of Materials Science Materials in Medicine, 5, 441–445.

    Article  Google Scholar 

  108. Okpalugo, T. I. T., McKenna, E., Magee, A. C., McLaughlin, J. A., & Brown, N. M. D. (2004). Journal of Biomedical Materials Research, Part A, 71A(2), 201–208.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Jackson .

Editor information

Editors and Affiliations

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ali, N. et al. (2016). Surface Engineering of Artificial Heart Valves to Using Modified Diamond-Like Coatings. In: Ahmed, W., Jackson, M. (eds) Surgical Tools and Medical Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-33489-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33489-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33487-5

  • Online ISBN: 978-3-319-33489-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics