Skip to main content

Synthesis of Nanostructured Material and Its Applications as Surgical Tools and Devices for Monitoring Cellular Activities

  • Chapter
  • First Online:
Surgical Tools and Medical Devices
  • 1916 Accesses

Abstract

Since the beginning of twenty-first century assembling of nanobricks with innovation and creativity lead to functional structural framework in order to fabricate a reliable–reproducible result-oriented nanodevice remains a synthetic challenge to the researchers and technologist. The use of nanomaterials as diagnostic tools is relatively a new area in medical research. The soft chemical approach help for synthesis of nanoparticle with distinctive physical, chemical, and electronic properties for various biosciences–clinical applications, opens new possibilities with controlled size particle and its distribution, surface chemistry, and agglomeration, which has attracted a remarkable interest in recent years precisely to label and to track abnormalities in vivo administration. Many contrast cell labeling and tracking strategies were used based on metal oxide nanopowder with high biocompatible to give a better contrast due to their Lewis-acid behavior of metal ions. With fast research in nano-biotechnology, demands for new synthetic approach for clinical functional materials have attracted interest for scientists. In coming times, it will revolutionize clinical studies both in vitro and vivo imaging with desired chemical composition, crystal phase, and surface morphology by better understanding biological barriers to target the drug at the malfunctional sites.

Small particle-Smart properties—Better understanding—Reliable applications-good health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Talha, J. E., Nadia, M. Z., Abdelhamid, E. S., & Nasir, M. A. (2014). Handbook of soft nanoparticles for biomedical applications. In J. Callejas-Fernández & J. Estelrich (Eds.), RSC Nanoscience and Nanotechnology (pp. 312–341). ISBN 978-1-84973-811-8.

    Google Scholar 

  2. West, A. R. (1984). Solid state chemistry and its applications (p. 488). Hoboken: Wiley. ISBN 978-1-119-94294-8.

    Google Scholar 

  3. Jain, K. K. (2008). Nanomedicines: Application of nanobiotechnology in medical practice. Medical Principles and Practice, 17(2), 89–101.

    Article  MathSciNet  Google Scholar 

  4. Solomon, M. D., & Sourza, G. G. (2011). Recent progress in the therapeutic applications of nanotechnology. Current Opinion in Pediatrics, 23(2), 215–220.

    Article  Google Scholar 

  5. Zhang, L., Gu, F. X., Chan, J. M., Wang, A. Z., Langer, R. S., & Farokhzad, O. C. (2008). Nanoparticles in medicines, therapeutic applications and developments. Clinical Pharmacology and Therapeutics, 83(5), 761–769.

    Article  Google Scholar 

  6. Azzazy, H. M., Mansour, M. M., & Kazmierczak, S. C. (2006). Nanodiagnostic: A new frontier for clinical laboratory medicines. Clinical Chemistry, 52(7), 1238–1246.

    Article  Google Scholar 

  7. Fendler, J. H. (Ed.) (1998). Nanoparticles and nanostructured films. Weinheim: Wiley. doi:10.1002/9783527612079

    Google Scholar 

  8. Jolivet, J. P. (2000). Metal oxide chemistry and synthesis, from solution to solid state. Chichester: Wiley. ISBN 978-0-471-97056-9.

    Google Scholar 

  9. Koch, C. C. (2002). Nanostructured materials. New York: William Andrew Publishing. ISBN 10:0-8155-1354-0-08154.

    Google Scholar 

  10. Yang, P. (2003). The chemistry of nanostructured materials. World Scientific. ISBN 130-978-981-4313-06-3.

    Google Scholar 

  11. Fedlheim, D. L., & Foss, C. A. (2001). Metal nanoparticles. CRC Press. ISBN 9780824706043.

    Google Scholar 

  12. Cao, G. (2004). Nanostructures and nanomaterials. Imperial College Press. ISBN 13:978-1860944802.

    Google Scholar 

  13. Vollath, D. (2008). Nanomaterials. Wiley. ISBN 978-3-527-33379-0.

    Google Scholar 

  14. Lalena, J. N., & Cleary, D. A. (2010). Principles of inorganic materials design. New York: Wiley. ISBN 978-0-470-40403-4.

    Google Scholar 

  15. Bandyopadhyay, A. K. (2007). Nanomaterials. New Age International. ISBN 978-81-224-2009-8.

    Google Scholar 

  16. Marzan, L. M., & Kamat, P. V. (2003). Nanoscale materials. Springer. ISBN 978-0-306-48108-6.

    Google Scholar 

  17. Keblinski, P., Wolf, O., Cleri, F., Phillpot, S. R., & Gleiter, H. (1998). MRS Bulletin 23(9), 36–41.

    Article  Google Scholar 

  18. Mathur, S., Shen, H., & Nalwa, H. S. (2004). Inorganic nanomaterials from molecular templates. Encyclopedia of Nanoscience and Nanotechnology 4, 131–191. ISBN 1-58883-159-0.

    Google Scholar 

  19. Wells, F. (1975). Structural inorganic chemistry. Oxford: Clarendon Press. ISBN 9780198553700.

    Google Scholar 

  20. Klabunde, K. J., & Richards, R. M. (2012). Nanoscale materials in chemistry (2nd ed.). New York: Wiley. ISBN 978-0-470-22270-6.

    Google Scholar 

  21. Muller, A., Cheetham, A. K., & Rao, C. N. R. (2007). Nanomaterials chemistry: Recent developments and new directions. Wiley. doi:10.1002/352760247X

    Google Scholar 

  22. Fierro, J. L. G. (2005). Metal oxide: Chemistry and applications. Taylor & Francis. ISBN 9780824723712.

    Google Scholar 

  23. Schubert, U., & Hüsing, N. (2000). Synthesis of Inorganic materials. Weinheim: Wiley. ISBN 3-527- 29550-X.

    Google Scholar 

  24. Rodriguez, J. A., & Garcia, M. F. (2007). Synthesis, properties and application of oxide nanomaterials. Hoboken: Wiley. ISBN 978-0-471-72405-6.

    Google Scholar 

  25. Athar, T. (2008). Metal oxide nanopowder. In W. Ahmad & M. Jackson (Eds.), Emerging nanotechnologies for manufacturing (Vol. 13, pp. 13818). Eaton Avenue, Norwich, NY: William Andrews Inc. ISBN 978-0-8155-1583-8.

    Google Scholar 

  26. Kohli, P., & Martin, C. (2005) Res. Curr. Pharm. Biotechnol. 6(1), 35–47. doi:10.21741138920105367211

    Google Scholar 

  27. Mackenzie, J. D., & Bescher, E. P. (2007). Chemical routes in the synthesis of nanomaterials using the sol–gel process. Accounts of Chemical Research 40(9), 810–818. doi:10.1021/ar7000149.

    Article  Google Scholar 

  28. Edler, K. J. (2004). Sol-gel processing. London: Kluwer. ISBN 1-4020-7969-9.

    Google Scholar 

  29. Klein, L. C. (1988). Sol-gel technology for thin film, fibres, performs, electronic, and speciality shape. Mill Road, Park Ridge, New Jersey,USA: Noyes Publications. ISBN 0-8155-1154-X.

    Google Scholar 

  30. Sapra, P., & Sarma, D. D. (2004) The chemistry of nanomaterials: Synthesis properties and application. In C. N. R. Rao, A. Muller & A. K. Cheetham (Eds.), Weenheem: Wiley. doi:10.1002/352760247X.ch11

    Chapter  Google Scholar 

  31. Sakka, S. (Ed.) (2004). Hand book of sol-gel science and technology: Processing, characterization and applications. Norwell, USA: Kluwer Academic Publishers. ISBN 1-4020-7966-4.

    Google Scholar 

  32. Brinker, C. J., & Scherer, G. W. (1990). Sol-gel science: The physics and chemistry of sol-gel processing (p. 108). San Diego: Academic Press. ISBN 0-12-134970-5.

    Google Scholar 

  33. Pavia, D. L. G. L., Kriz, G. S., & Vyvyan, J. R. (2009). Introduction to spectroscopy (4th ed.). USA: Brooks/cole Cengage Learning. ISBN 13:978-0-495-11478-9.

    Google Scholar 

  34. Skoog, D. A., Holler, F. J., & Crouch, S. R. (2007). Principles of instrumental analysis (6th ed., p. 169). Belmont, CA: Thomson Brooks/Cole. ISBN 0495012017.

    Google Scholar 

  35. Stuart, H. B. (2004). Infrared spectroscopy fundamentals and applications. Chichester: Wiley. ISBN 978-0-470-85428-0.

    Book  Google Scholar 

  36. Atkins, P., & Paula, J. (2006). Physical chemistry (8th ed.). New York: Oxford University Press.

    Google Scholar 

  37. Nakamoto, K. (2008). Infrared and Raman spectra of inorganic and coordination compounds (6th ed.). Wiley-Interscience. ISBN 978-0-471-74493-1.

    Google Scholar 

  38. Davydov, A. A. (1990). Infrared spectroscopy of absorbed species on the surface of transition metal oxides. Wiley. ISBN 047191813X.

    Google Scholar 

  39. Soacrates, G. (2001). Infrared and Raman characteristic group frequencies: Tables and charts. Wiley. ISBN 10 0-470-09307-2.

    Google Scholar 

  40. Mitra, S. (2003). Sample preparation techniques in analytical chemistry. New Jersey: Wiley. ISBN 0-471-32845-6.

    Google Scholar 

  41. Lakowicz, J. R. (2006). Principle of fluorescence spectroscopy (3rd ed.). Baltimore: Springer. ISBN 978-0-387-46312-4.

    Google Scholar 

  42. Cullity, B. D. (1978). Elements of X-ray diffraction. London: Addison-Wesley Publishing Company Inc. ISBN 1178511421, 9781178511420.

    Google Scholar 

  43. Guinier, A. (1994). X-ray diffraction in crystals, imperfect crystals and amorphous bodies. New York: Dover Publications. ISBN 0486680118, 9780486680118.

    Google Scholar 

  44. Klug, M. P., & Alexander, L. E. (1974). X-ray diffraction procedure for polycrystalline and amorphous materials. New York: Wiley. ISBN 978-0-471-49369-3.

    Google Scholar 

  45. Powder Diffraction Files. (2015–16). JCPDS. (Ed:International Center for Diffraction Data, Pasadena, CA). http://www.icdd.com/

  46. Watt, I. M. (1997). The principles and practice of electron microscopy (2nd ed.). Cambridge: Cambridge University Press. ISBN 978-0521435918.

    Google Scholar 

  47. Gabbott, P. (2007). Principles and applications of thermal analysis. USA: Wiley-Blackwell Publishing. ISBN 978-1-4051-3171-1.

    Google Scholar 

  48. Niasaria, M. S., Mir, N., & Davar, F. (2009). Synthesis and characterization of NiO nanoclusters via thermal decomposition. Polyhedron 28(6), 1111–1114. doi:10.1066/j.poly.2009.01.026

  49. Gelb, L. D., & Gubbins, K. E. (1998). Pore size distributions in porous glasses. Langmuir 14(8), 2097–2111. doi:10.1021/la9808418

    Article  Google Scholar 

  50. Bae, K. H., Chung, H. J., & Park, T. G. (2011). Nanomaterials for cancer therapy and imaging. Molecules and Cells 31(4), 295–302.

    Article  Google Scholar 

  51. Barreto, J. A., Malley, W. O., & Kubeil, M. (2011). Nanomaterials: Applications in cancer imaging and therapy. Advanced Materials, 23(12), H18–H40.

    Article  Google Scholar 

  52. Jain, K. K. (2010) Advances in the field of nanooncology. BMC Med 8(83).

    Google Scholar 

  53. Ranganathan, R., Madanmohan, S., & Kesavan, A (2012). Nanomedicines: Towards development of patient-friendly drug-delivery systems for oncological applications. International Journal of Nanomedicines 7, 1043–1060.

    Google Scholar 

  54. Bhattacharya, R., & Mukherjee, P. (2008). Biological properties of Naked metal nanoparticles. Advanced Drug Delivery Reviews, 60(11), 1289–1306.

    Article  Google Scholar 

  55. Veiseh, O., Sun, C., & Fang, C. (2009). Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobes across the blood-brain barrier. Cancer Research, 69(15), 6200–6207.

    Article  Google Scholar 

  56. John, R., & Boppart, S. A. (2011). Magnetomotive molecular nanoprobles. Current Medicinal Chemistry, 18(14), 2103–2114.

    Article  Google Scholar 

  57. Orringer, D. A., Koo, Y. E., Chen, T., Kopelman, R., Sagher, O., & Philbert, M. A. (2009). Small solution for big problems: The application of nanoparticles to brain tumor diagnosis and therapy. Clinical Pharmacology and Therapeutics, 85(5), 531–534.

    Article  Google Scholar 

  58. Mahmoudi, M., Sant, S., Wang, B., Laurent, S., & Sen, T. (2011). Superaparamagnetic Iron oxide nanoparticles (SPIONS): Development surface modification and applications in Chemotherapy. Advanced Drug Delivery Review, 63(1–2), 24–26.

    Article  Google Scholar 

  59. Pan, Y., Du, X., Zhao, F., & Xu, B. (2012). Magnetic nanoparticles for manipulation of proteins and cells. Chemical Society Review, 41, 2912–2929.

    Article  Google Scholar 

  60. Kuntz, E. H., & Kuntz, H. D. (2006). Hand book of hepatology: Principles and practice: History, morphology, biochemistry, diagnostics, clinic, therapy (2nd ed., p. 3). Heidelberg: Springer. ISBN 978-3-540-28977-7.

    Google Scholar 

  61. Modi, G., Pillay, V., & Choonara, Y. E. (2012). Nanotechnological applications for the treatment of neurodegenerative disorders. Progress in Neurobiology, 88(4), 272–285.

    Article  Google Scholar 

  62. Streiecher, R. M., Schmidt, M., & Fiorito, S. (2007). Nanosurfaces and nanostructures for artificial implants. Nanomedicines, 2(6), 861–874.

    Article  Google Scholar 

  63. Chun, Y. W., & Webster, T. J. (2007). The role of nanomedicines in growing tissues. Annals of Biomedical Engineering, 37(10), 2034–2047.

    Article  Google Scholar 

  64. Laurencein, C. T., Kumbar, S. G., & Nukavarapu, S. P. (2007). Nanotechnology and orthopedics: A personal perspective. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 1, 6–10.

    Google Scholar 

  65. Hirst, S. M., Karakoti, A. S., & Tyler, R. D. (2009). Anti-inflammatory properties of CeO2 nanoparticles. Small (Weinheim an der Bergstrasse, Germany), 5(24), 2848–2856.

    Article  Google Scholar 

  66. Koo, O. M., Rubinstein, I., & Onyuksel, H. (2005). Role of nanotechnology in targeted drug delivery and imaging: A concise review. Nanomedicine: Nanotechnology, Biology and Medicine, 1193–212.

    Google Scholar 

  67. Wagner, V., Dullaart, A., Bock, A. K., & Zweck, A. (2007). The emerging nanomedicine landscape. Nature and Biotechnology, 24, 1211–1217.

    Article  Google Scholar 

  68. Chakraborty, M., Jain, S., & Rani, V. (2011). Nanotechnology: Emerging tool for diagnostics and therapeutics. Applied Biochemistry and Biotechnology, 165(5–6), 51178–51687.

    Google Scholar 

  69. Riehemann, K., Schneider, S. W., Luger, T. A., Godin, B., Ferrari, M., & Fuchs, H. (2009). Nanomedicine—challenge and perspectives. Angewandte Chemie, 48(5), 872–897.

    Article  Google Scholar 

  70. Petros, A., & DeSimone, J. M. (2010). Strategies in the design of nanoparticles for therapeutic applications. Nature Reviews Drug Discovery, 9, 615–627.

    Article  Google Scholar 

  71. Praveen, S., Misra, R., & Sahoo, S. K. (2012). Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicines, 8, 147–166.

    Article  Google Scholar 

  72. Cui, Y., Wei, Q., Park, H., & Lieber, C. M. (2001). Nanowire nanosensor for highly sensitive and biological and chemical species. Science, 293, 1289–1293.

    Article  Google Scholar 

  73. Albanese, A., Tang, P. S., & Khan, W. C. (2012). The effect of nanoparticles size, shape and surface chemistry on biological systems. Annual Review of Biomedical Engineering, 14, 1016.

    Article  Google Scholar 

  74. Sapsford, E., Algar, W. R., Berti, L., Gemmill, K. B., Casey, B. J., Oh, E., et al. (2013). “Functionalizing nanoparticles with biological molecules: Developing chemistries that facilitate nanotechnology. Chemical Reviews, 113(3), 1904–2074.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taimur Athar .

Editor information

Editors and Affiliations

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Athar, T. (2016). Synthesis of Nanostructured Material and Its Applications as Surgical Tools and Devices for Monitoring Cellular Activities. In: Ahmed, W., Jackson, M. (eds) Surgical Tools and Medical Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-33489-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33489-9_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33487-5

  • Online ISBN: 978-3-319-33489-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics