Skip to main content

Bonelike® Graft for Regenerative Bone Applications

  • Chapter
  • First Online:
Surgical Tools and Medical Devices

Abstract

Bone is a complex mineralized living tissue exhibiting the property of marked rigidity and strength whilst maintaining some degree of elasticity. In general, there are two types of bones in the skeleton, namely, the flat bones, i.e. skull bones, scapula, mandible, ilium, and the long bones, i.e. tibia, femur and humerus. In principle, bone serves the following three main functions in human bodies: (i) acts as a mechanical support; (ii) is the site of muscle attachment for locomotion, protective, for vital organs and bone marrow; and (iii) to assist metabolism, it acts as a reserve of ions for the entire organism, especially calcium and phosphate. This chapter describes the mechanics of bone and a newly developed material that mimics bone for applications in regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Hughes, F. J., Turner, W., Belibasakis, G., & Martuscelli, G. (2006). Effects of growth factors and cytokines on osteoblastic differentiation. Periodontology, 2000(41), 48.

    Article  Google Scholar 

  2. Sommerfeldt, D. W., & Rubin, C. T. (2001). Biology of bone and how it orchestrates the form and function of the skeleton. European Spine Journal, 10, S86–S95.

    Article  Google Scholar 

  3. Weiner, S., & Traub, W. (1992). Bone structure: from angstroms to microns. FASEB Journal, 6, 879.

    Article  Google Scholar 

  4. Parfitt, A. M. (1990). Pharmacological manipulation of bone remodelling and calcium homeostasis. In. A. J. Kanis (Ed.), Calcium metabolism (pp. 1–27). Basel: Karger.

    Google Scholar 

  5. Hollinger, J., & Wong, M. E. K. (1996). The integrated process of hard tissue regeneration with special emphasis on fracture healing. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontics, 82, 594.

    Article  Google Scholar 

  6. Kalfas, I. H. (2001). Principles of bone healing. Neurosurgical Focus, 10, 1.

    Google Scholar 

  7. Doron, I. I., & Amy, L. L. (2003). Bone graft substitutes. Operative Techniques in Plastic and Reconstructive Surgery, 9(4), 151.

    Google Scholar 

  8. Giannoudis, P. V., Dinopoulos, H., & Tsiridis, E. (2005). Bone substitutes: An update. Injury: International Journal of the Care of the Injured, 365, 520.

    Google Scholar 

  9. Mary, E. A. R., & Raymond, A. Y. (1998). Bone replacement grafts—The bone substitutes. Dental Clinics of North America, 42(3), 491.

    Google Scholar 

  10. Cato, T. (2003). In C. T. Laurencin (Ed.), Laurencin and Yusuf Khan: Bone grafts and bone graft substitutes: A brief history (p. 3). USA: ASTM International.

    Google Scholar 

  11. Wright, S. (1999). Commentary the bone-graft market in Europe. In Datamonitor plc. (Ed.), Emerging technologies in orthopedics I: Bone graft substitutes. Bone growth stimulators and bone growth factors (p. 591).

    Google Scholar 

  12. Boden, S. D. (2003). Osteoinduction bone graft substitutes: Burden of proof. American Academy of Orthopaedic Surgeons Bulletin, 51(1), 42.

    Google Scholar 

  13. Anon. (2003, April 9). Synthetic bone graft to be tested in revision hip surgery. News Letter. London, UK: ApaTech Limited.

    Google Scholar 

  14. Attawia, M., Kadiyala, S., Fitzgerald, K., Kraus, K., & Bruder, S. P. (2003). In C. T. Laurencin (Ed.), Cell-based approaches for one graft substitutes (p. 126). USA: ASTM International.

    Google Scholar 

  15. Santos, J. D., Hastings, G. W., & Knowles, J. C. (1999). Sintered hydroxyapatite compositions and method for the preparation thereof. European Patent WO 0068164.

    Google Scholar 

  16. Lopes, M. A., Santos, J. D., Monteiro, F. J., & Knowles, J. C. (1998). Glass reinforced hydroxyapatite: a comprehensive study of the effect of glass composition on the crystallography of the composite. Journal of Biomedical Materials Research, 39, 244.

    Article  Google Scholar 

  17. Lopes, M. A., Monteiro, F. J., & Santos, J. D. (1999). Glass-reinforced hydroxyapatite composites: Fracture toughness and hardness dependence on microstructural characteristics. Biomaterials, 20, 2085.

    Article  Google Scholar 

  18. Lopes, M. A., Silva, R. F., Monteiro, F. J., & Santos, J. D. (2000). Microstructural dependence of Young’s and shear moduli of P2O5 glass reinforced hydroxyapatite for biomedical applications. Biomaterials, 21, 749.

    Article  Google Scholar 

  19. Santos, J. D., Reis, R. L., Monteiro, F. J., Knowles, J. C., & Hastings, G. W. (1995). Liquid phase sintering of hydroxyapatite by phosphate and silicate glass additions structure and properties of the composites. Journal of Materials Science: Materials in Medicine, 6, 348.

    Google Scholar 

  20. Santos, J. D., Silva, P. L., Knowles, J. C., Talal, S., & Monteiro, F. J. (1996). Reinforcement of hydroxyapatite by adding P2O5–CaO glasses with Na2O, K2O and MgO. Journal of Materials Science: Materials in Medicine, 7, 187.

    Google Scholar 

  21. Davies, J. E. (1988). The importance and measurement of surface charge species in cell behaviour at the biomaterial interface. In B. D. Ratner (Ed.), Surface characterization of biomaterials (pp. 219–234). New York: Elsevier.

    Google Scholar 

  22. Ratner, B. D. (1987). Biomaterial surfaces. Journal of Biomedical Materials Research, 21, 59.

    Article  Google Scholar 

  23. Manson, S. R., Harker, L. A., Ratner, B. D., & Hoffman, A. S. (1980). In vivo evaluation of artificial surfaces with a non human primate model of arterial thrombosis. Journal of Laboratory and Clinical Medicine, 95, 289.

    Google Scholar 

  24. Grinnell, F., Milamand, M., & Srere, P. A. (1972). Studies on cell adhesion. Archives of Biochemistry and Biophysics, 153, 193.

    Article  Google Scholar 

  25. Chang, S. K., Hum, O. S., Moscarello, M. A., Neumann, A. W., Zing, W., Leutheusser, M. J., & Ruegsegger, B. (1997). Platelet adhesion to solid surfaces: The effect of plasma proteins and substrate wettability. Medical Progress Through Technology, 5, 57.

    Google Scholar 

  26. Lopes, M. A., Knowles, J. C., & Santos, J. D. (2000). Structural insights of glass reinforced hydroxyapatite composites by Rietveld refinement. Biomaterials, 21, 1905.

    Article  Google Scholar 

  27. Rehman, I., & Bonfield, W. (1995). ‘Structural characterisation of natural and synthetic bioceramics by photo acoustic-FTIR spectroscopy’. In J. Wilson, L. L. Hench, & D. Greenspan (Eds.), bioceramics (Vol. 8, pp. 163–168). Oxford: Butterworth-Heinmann Ltd.

    Google Scholar 

  28. Okazaki, M., & Sato, M. (1990). Computer graphics of hydroxyapatite and β-tricalcium phosphate. Biomaterials, 11, 573.

    Article  Google Scholar 

  29. Bigi, A., Falini, G., Foresti, E., Gazzano, M., Ripamonti, A., & Roveri, N. (1996). Rietveld structure refinements of calcium hydroxyapatite containing magnesium. Acta Crystallographica Section B: Structural Science, B52, B87.

    Article  Google Scholar 

  30. Kotani, S., Fijita, Y., Kitsugi, T., Nakamura, T., Yamamuro, T., Ohtsuki, C., & Kokubo, T. (1991). Bone bonding mechanism of β-tricalcium phosphate. Journal of Biomedical Materials Research, 25, 1303.

    Article  Google Scholar 

  31. Lopes, M. A., Monteiro, F. J., Santos, J. D., Serro, A. P., & Saramago, B. (1999). Hydrophobicity, surface tension, and zeta potential measurements of glass-reinforced hydroxyapatite composites. Journal of Biomedical Materials Research, 45, 370.

    Article  Google Scholar 

  32. Santos, J. D., Knowles, J. C., Reis, R. L., Monteiro, F. J., & Hastings, G. W. (1994). Microstructural characterization of glass reinforced hydroxyapatite composites. Biomaterials, 15(1), 5.

    Article  Google Scholar 

  33. Yamamuro, Y., Hench, L. L., & Wilson, J. (1990). CRC Handbook of bioactive ceramics. Boca Raton: CRC Press.

    Google Scholar 

  34. Lopes, M. A., Monteiro, F. J., & Santos, J. D. (1999). Glass reinforced hydroxyapatite composites: Secondary phase proportions and densification effects assessing biocompability. Journal of Biomedical Materials Research (Biomaterial Applications), 48, 734.

    Google Scholar 

  35. Rice, R. W. (1977). Microstructure dependence of mechanical behaviour. In R. K. MacCrone (Ed.), Treatise on materials science and technology (Vol. 11, pp. 200–382). New York: Academic Press.

    Google Scholar 

  36. Hauberm, R. A., & Anderson, R. M. (1991). Engineering properties of glass–matrix composites. In Ceramics and glasses, engineered materials handbook (pp. 858–869). USA: ASM Publication.

    Google Scholar 

  37. Kirkpatrick, C. J. (1992). A critical view of current and proposed methodologies for biocompatibility testing: cytotoxic in vitro. Regulatory Affairs, 4, 13.

    Google Scholar 

  38. Hanson, S., Lalor, P. A., Niemi, S. M., Ratner, B. D., et al. (1996). Testing biomaterials. In: B. D. Ratner & A. S. Hoffman (Eds.), Biomaterials science. An introduction to materials in medicine (p. 215). Basel: Karger.

    Chapter  Google Scholar 

  39. Lopes, M. A., Knowles, J. C., Kuru, L., Santos, J. D., Monteiro, F. J., & Olsen, I. (1998). Flow cytometry for assessing biocompatibily. Journal of Biomedical Materials Research, 41, 649.

    Article  Google Scholar 

  40. Lopes, M. A., Knowles, J. C., Santos, J. D., Monteiro, F. J., & Olsen, I. (2000). Direct and indirect effects of P2O5-glass reinforced hydroxiapatite on the growth and function of osteoblast-like cells. Biomaterials, 21, 1165.

    Article  Google Scholar 

  41. Costa, M. A., Gutierres, M., Almeida, R., Lopes, M. A., Santos, J. D., & Fernandes, M. H. (2004). In vitro mineralisation of human bone marrow cells cultured on Bonelike®. Key Engineering Materials, 254–256, 821.

    Google Scholar 

  42. Frank, O., Heim, M., Jakob, M., Barbero, A., Schafer, D., Bendik, I., et al. (2000). Real-time quantitative RT-PCR analysis of human bone marrow stromal cells during osteogenic differentiation in vitro. Journal of Cellular Biochemistry, 85, 737.

    Article  Google Scholar 

  43. Marie, P. J., de Vernejoul, M. A., & Lomri, A. (1992). Stimulation of bone formation in osteoporosis patients treated with fluoride associated with increased DNA synthesis by osteoblastic cells in vitro. Journal of Bone and Mineral Research, 7, 103.

    Article  Google Scholar 

  44. Council of Europe. (1986). Convention for the protection of vertebrata animals used for experimental and other scientific purposes (ET 123). Council of Europe: Strasbourg.

    Google Scholar 

  45. European Commission. (1986). Directive for the protection of vertebrate animals used for experimental and other scientific purposes (86/609/EEC). Official Journal of the European Commission, L 358, 1.

    Google Scholar 

  46. Lobato, J. V., Sooraj Hussain, N., Botelho, C. M., Rodrigues, J. M., Luis, A. L., Mauricio, A. C., et al. (2005). Assessment of the potential of Bonelike® graft for bone regeneration by using an animal model. Key Engineering Materials, 284–286, 877.

    Article  Google Scholar 

  47. Lobato, J. V., Sooraj Hussain, N., Botelho, C. M., Mauricio, A. C., Afonso, A., Ali, N., et al. (2006). Assessment of Bonelike® graft with a resorbable matrix using an animal model. Thin Solid Films, 515, 642.

    Google Scholar 

  48. User, H. M., & Nadler, R. B. (2003). Applications of FloSeal in nephron-sparing surgery. Urology, 62(2), 342.

    Article  Google Scholar 

  49. Weaver, F. A., Hood, D. B., Zatina, M., Messina, L., & Badduke, B. (2002). Gelatin-thrombin-based hemostatic sealant for intraoperative bleeding in vascular surgery. Annals of Vascular Surgery, 16, 286.

    Article  Google Scholar 

  50. Dodane, V., & Vilivalam, V. (1998). Pharmaceutical applications of chitosan. Pharmaceutical Science & Technology Today, 1, 246.

    Article  Google Scholar 

  51. Ettinger, B., Genant, H. K., & Cann, C. E. (1985). Long-term estrogen replacement therapy prevents bone loss and fractures. Annals of Internal Medicine, 102, 319.

    Article  Google Scholar 

  52. Bryant, H., Glasebrook, A. L., Yang, N. N., & Sato, M. (1999). An estrogen receptor basis for raloxifene action in bone. Journal of Steroid Biochemistry and Molecular Biology, 69, 37.

    Article  Google Scholar 

  53. Delmas, P. D., Bjarnason, N. H., Mitlak, B. H., Ravoux, A. C., Shah, A. S., Huster, W. J., et al. (1997). Effects of raloxifene on bone mineral density, serum cholesterol concentrations, and uterine endometrium in postmenopausal women. New England Journal of Medicine, 337, 1641.

    Article  Google Scholar 

  54. Reddi, A. H., & Cunningham, N. S. (1993). Initiation and promotion of bone differentiation by bone morphogenic proteins. Journal of Bone and Mineral Research, 8(2), S499.

    Article  Google Scholar 

  55. Lopes, M. A., Santos, J. D., Monteiro, F. J., Osaka, A., & Ohtsuki, C. (2001). Push-out testing and histological evaluation of glass reinforced hydroxyapatite composites implanted in the tibia of rabbits. Journal of Biomedical Materials Research, 54, 463.

    Article  Google Scholar 

  56. Duarte, F., Santos, J. D., & Afonso, A. (2004). Medical applications of Bonelike in maxillofacial surgery. Materials Science Forum, 455–456, 370.

    Article  Google Scholar 

  57. Costa, M. A., Gutierres, M., Almeida, L., Lopes, M. A., Santos, J. D., & Fernandes, M. H. (2004). In vitro mineralisation of human bonemarrow cells cultured on bonelike®. Key Engineering Materials, 254–256, 821.

    Google Scholar 

  58. Sousa, R. C., Lobato, J. V., Sooraj Hussain, N., Lopes, M. A., Mauricio, A. C., & Santos, J. D. (2006). Bone regeneration in maxillofacial surgery using novel Bonelike® synthetic bone graft: Radiological and histological analyses. British Journal of Oral and Maxillofacial Surgery (submitted).

    Google Scholar 

  59. Gutierres, M., Sooraj Hussain, N., Afonso, A., Almeida, L., Cabral, A. T., Lopes, M. A., et al. (2005). Biological behaviour of bonelike® graft Implanted in the tibia of humans. Key Engineering Materials, 284–286, 1041.

    Article  Google Scholar 

  60. Gutierres, M., Sooraj Hussain, N., Lopes, M. A., Afonso, A., Cabral, A. T., Almeida, L., et al. (2006). Histological and scanning electron microscopy analyses of bone/implant interface using the novel Bonelike® synthetic bone graft. Journal of Orthopaedic Research, 24, 953.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fernandes, M.H., Caram, R., Sooraj Hussain, N., Mauricio, A.C., Santos, J.D. (2016). Bonelike® Graft for Regenerative Bone Applications. In: Ahmed, W., Jackson, M. (eds) Surgical Tools and Medical Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-33489-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33489-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33487-5

  • Online ISBN: 978-3-319-33489-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics