Skip to main content

Applications of Carbon Nanotubes in Bio-Nanotechnology

  • Chapter
  • First Online:
Book cover Surgical Tools and Medical Devices

Abstract

Patients are seeking for better health care, while healthcare providers and insurance companies are calling for cost-effective diagnosis and treatments. The biomedical industry thus faces the challenge of developing devices and materials that offer benefits to both patients and healthcare industry. The combination of biology and nanotechnology is expected to revolutionize biomedical research by exploiting novel phenomena and properties of materials present at nanometer length scale. This will lead to the creation of functional materials, devices, and systems through control of matter on the nanometer meter scale and the direct application of nanomaterials to biological targets.

The original version of this chapter was revised: Erroneously added author name has been removed. The correction to this chapter is available at https://doi.org/10.1007/978-3-319-33489-9_24

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Change history

  • 20 January 2019

    ■■■

References

  1. Xiao, Y., et al. (2003). Science, 299, 1877.

    Google Scholar 

  2. Elghanian, R., et al. (1997). Science, 277, 1078.

    Google Scholar 

  3. Averitt, R. D., et al. (1997). Physical Review Letters, 78, 4217.

    Google Scholar 

  4. Clapp, A. R., et al. (2004). Journal of the American Chemical Society, 126, 301.

    Google Scholar 

  5. Wang, S., et al. (2002). Nano Letters, 2, 817.

    Google Scholar 

  6. Chan, W. C. W., & Nei, S. (1998). Science, 281, 2016.

    Google Scholar 

  7. Cao, Y. W. C., Jin, R. C., & Mirkin, C. A. (2002). Science, 297, 1536.

    Google Scholar 

  8. Hartgerink, J. D., Beniash, E., & Stupp, S. I. (2001). Science, 294, 1684.

    Google Scholar 

  9. Koltover, I., Salditt, T., Radler, J. O., & Sa, C. R. (1998). Science, 281, 78.

    Google Scholar 

  10. Ulrich, K. E., Cannizzaro, S. M., Langer, R. S., & Shakesheff, K. M. (1999). Chemical Reviews, 99, 3181.

    Google Scholar 

  11. Fandrich, M., Fletcher, M. A., & Dobson, C. M. (2001). Nature, 410, 165.

    Google Scholar 

  12. Seeman, N. C., & Belcher, A. M. (2002). Proceedings of the National Academy of Sciences of the United States of America, 99, 6451.

    Google Scholar 

  13. Ravindran, S., Chaudhary, S., Colburn, B., Ozkan, M., & Ozkan, C. S. (2003). Nano Letters, 3, 447.

    Google Scholar 

  14. Haremza, J. M., Hahn, M. A., Krauss, T. D., Chen, S., & Calcines, J. (2002). Nano Letters, 2, 1253.

    Google Scholar 

  15. Hazani, M., Naaman, R., Hennrich, F., & Kappes, M. M. (2003). Nano Letters, 3, 153.

    Google Scholar 

  16. Dwyer, C., Guthold, M., Falvo, M., & Washburn, S. (2002). Nanotechnology, 13, 601.

    Google Scholar 

  17. Ellis, A. V., Vijayamohanan, K., Goswami, R., Chakrapani, N., Ramanathan, L. S., Ajayan, P. M., & Ramanath, G. (2003). Nano Letters, 3, 279.

    Google Scholar 

  18. Wilkinson, J. M. (2003). Medical Device Technologies, 14, 29.

    Google Scholar 

  19. Shim, M., Kam, N. W. S., Chen, R. J., Li, Y., & Dai, H. (2002). Nano Letters, 2, 285.

    Google Scholar 

  20. Pantarotto, D., Briand, J.-P., Prato, M., & Bianco, A. (2004). Chemical Communications, 16.

    Google Scholar 

  21. Kam, N. W. S., Jessop, T. C., Wender, P. A., & Dai, H. (2004). Journal of the American Chemical Society, 126, 6850.

    Google Scholar 

  22. Gooding, J. J., Wibowo, R., Liu, J., Yang, W., Losic, D., Orbons, S., et al. (2003). Journal of the American Chemical Society, 125, 9006.

    Google Scholar 

  23. Wang, J., Liu, G., & Jan, M. R. (2004). Journal of the American Chemical Society, 126, 3010.

    Google Scholar 

  24. Wang, J., Li, M., Shi, Z., Li, N., & Gu, Z. (2002). Electroanalysis, 14, 225.

    Google Scholar 

  25. Wang, J., Kawde, A. N., & Jan, M. R. (2004). Biosensors and Bioelectronics, 20, 995.

    Google Scholar 

  26. Chen, Y., Zhang, Y. Q., Zhang, T. H., Gan, C. H., Zheng, C. Y., & Yu, G. (2006). Carbon, 44, 37.

    Google Scholar 

  27. Iijima, S. (1991). Nature, 354, 56.

    Google Scholar 

  28. Thess, A., et al. (1996). Science, 273, 483.

    Google Scholar 

  29. Tans, S. J., et al. (1997). Nature, 386, 474.

    Google Scholar 

  30. Joachim, C., & Gimzewski, J. K. (1997). Chemical Physics Letters, 265, 353.

    Google Scholar 

  31. Tomanek, D., & Enbody, R. J. (Eds.). (2000). Science and application of nanotubes. New York: Kluwer Academic/Plenum Publishers.

    Google Scholar 

  32. Fischer, J. E., et al. (1997). Physical Review B, 55, R4921.

    Google Scholar 

  33. Lee, R. S., Kim, H. J., Fischer, J. E., Thess, A., & Smalley, R. E. (1997). Nature, 388, 255.

    Google Scholar 

  34. Claye, A. S., Fischer, J. E., Huffman, C. B., Rinzler, A. G., & Smalley, R. E. (2000). Journal of the Electrochemical Society, 147, 2845.

    Google Scholar 

  35. Gavalas, V. G., Andrews, R., Bhattacharyya, D., & Bachas, L. G. (2001). Nano Letters, 1, 719.

    Google Scholar 

  36. Garjonyte, R., & Malinauskas, A. (2001). Biosensor & Bioelectronics, 15, 445.

    Google Scholar 

  37. Rubianes, M. D., & Rivas, G. A. (2003). Electrochemistry Communications, 5, 689.

    Google Scholar 

  38. Wang, J., Kawde, A. N., & Jan, M. R. (2004). Biosensors & Bioelectronics, 20, 995.

    Google Scholar 

  39. Ye, J. S., Liu, X., Cui, H. F., Zhang, W. D., Sheu, F. S., & Lim, T. M. (2005). Electrochemistry Communications, 7, 249.

    Google Scholar 

  40. Shim, M., Kam, N. W. S., Chen, R. J., Li, Y., & Dai, H. (2002). Nano Letters, 2, 285.

    Google Scholar 

  41. Huang, W., Taylor, S., Fu, K., Lin, Y., Zhang, D., Hanks, T. W., et al. (2002). Nano Letters, 2, 311.

    Google Scholar 

  42. Sotiropoulou, S., Gavalas, V., Vamvakaki, V., & Chaniotakis, N. A. (2003). Biosensors & Bioelectronics, 18, 211.

    Google Scholar 

  43. Biro, L. P., Horvath, Z. E., Szlamas, L., Kertesz, K., Weber, F., Juhasz, G., et al. (2003). Chemical Physics Letters, 399, 402.

    Google Scholar 

  44. Journet, C., & Bernier, P. (1998). Applied Physics A, 1, 9.

    Google Scholar 

  45. Zhang, Y. (2001). Applied Physics Letters, 79, 3155.

    Google Scholar 

  46. Chiang, M., Liu, K., Lai, T., Tsai, C., Cheng, H., & Lin, I. (2001). Journal of Vacuum Science and Technology B, 19, 1034.

    Google Scholar 

  47. Biro, L. P., Horvath, Z. E., Szlamas, L., Kertesz, K., Weber, F., Juhasz, G., et al. (2003). Chemical Physics Letters, 399, 402.

    Google Scholar 

  48. Park, D., Kim, Y. H., & Lee, J. K. (2003). Carbon, 41, 1025.

    Google Scholar 

  49. Qin, L. C., Zhou, D., Krauss, A. R., & Gruen, D. M. (1998). Applied Physics Letters, 72, 3437.

    Google Scholar 

  50. Meyyappan, M., Delzeit, L., Cassell, A., & Hash, D. (2003). Plasma Sources Science and Technology, 12, 205.

    Google Scholar 

  51. Dai, H. (2002). Surface Sci, 500, 218.

    Google Scholar 

  52. Popov, V. (2004). Materials Science and Engineering R Reports, 43.

    Google Scholar 

  53. Dresselhaus, M., Dresselhaus, G., & Saito, R. (1995). Carbon, 33, 883.

    Google Scholar 

  54. Liang, W. Z., Chen, G. H., Li, Z., & Tang, Z. K. (2002). Applied Physics Letters, 80, 3415.

    Google Scholar 

  55. Ajayan, P. M. (1999). Chemical Reviews, 99, 1787.

    Google Scholar 

  56. Baughman, R. H., Zakhidov, A. A., & Heer, W. A. (2002). Science, 297, 787.

    Google Scholar 

  57. Thostenson, E. T., Ren, Z., & Chou, T. W. (2001). Composites Science and Technology, 61, 1899.

    Google Scholar 

  58. Lupo, F., Kamalakaran, R., Scheu, C., Grobert, N., & Ruhle, M. (2004). Carbon, 42, 1995.

    Google Scholar 

  59. Mintmire, J. W., Dunlap, B. I., & White, C. T. (1992). Physical Review Letters, 68, 631.

    Google Scholar 

  60. Hamada, N., Sawada, S. I., & Oshiyama, A. (1992). Physical Review Letters, 68, 1579.

    Google Scholar 

  61. Saito, R., Fujita, M., Dresselhaus, G., & Dresselhaus, M. S. (1992). Applied Physics Letters, 60, 2204.

    Google Scholar 

  62. Kataura, H., Kumazawa, Y., Maniwa, Y., Umezu, I., Suzuki, S., Ohtsuka, Y., & Achiba, Y. (1999). Synthetic Metals, 103, 2555.

    Google Scholar 

  63. Chen, J., Hamon, M. A., Hu, H., Chen, Y., Rao, A. M., Eklund, P. C., & Haddon, R. C. (1998). Science, 282, 95.

    Google Scholar 

  64. Britto, P. J., Santhanam, K. S. V., & Ajayan, P. M. (1996). Bioelectrochemistry and Bioenergetics, 41, 121.

    Google Scholar 

  65. Star, A., Gabriel, J.-C. P., Bradley, K., & Gruner, G. (2003). Nano Letters, 3, 459.

    Google Scholar 

  66. Boussaad, S., Tao, N., Zhang, R., Hopson, T., & Nagahara, L. A. (2003). Chemical Communications, 1502.

    Google Scholar 

  67. Besteman, K., Lee, J. O., Wiertz, F. G., Heering, H. A., & Dekker, C. (2003). Nano Letters, 3, 727.

    Google Scholar 

  68. Chen, R, J., Bangsaruntip, S., Drouvalakis, K. A., Kam, N. W. S., Shim, M., Li, Y., et al. (2003). Proceedings of National Academy of Sciences U.S.A, 100, 4984.

    Google Scholar 

  69. Wang, J., Liu, G., & Jan, M. R. (2004). Journal of the American Chemical Society, 126, 3010.

    Google Scholar 

  70. Azamian, B. R., Davis, J. J., Coleman, K. S., Bagshaw, C. B., & Green, M. L. H. (2002). Journal of the American Chemical Society, 124, 2664.

    Google Scholar 

  71. Pathirana, S. T., Barbaree, J., Chin, B. A., Hartell, M. G., Neely, W. C., & Vodyanoy, V. (2000). Biosensors & Bioelectronics, 15, 135.

    Google Scholar 

  72. Huang, T. S., Tzeng, Y., Liu, Y. K., Chen, Y. C., Walker, K. R., Guntupalli, R., & Liu, C. (2004). Diamond and Related Materials, 13, 1098.

    Google Scholar 

  73. Bandyopadhyaya, R., Nativ-Roth, E., Regev, O., & Yerushalmi-Rozen, R. (2002). Nano Letters, 2, 25.

    Google Scholar 

  74. Bodanszky, M., & Bodanszky, A. (1994). Journal of the American Chemical Society, 126, 12750.

    Google Scholar 

  75. Bourdillon, C., Demaille, C., Gueris, J., Moirourx, J., & Saveant, J. M. (1993). Journal of the American Chemical Society, 115, 12264.

    Google Scholar 

  76. Cai, C., & Chen, J. (2004). Analytical Biochemistry, 332, 75.

    Google Scholar 

  77. Gooding, J. J., Wibowo, R., Liu, J., Yang, W., Losic, D., Orbons, S., et al. (2003). Journal of the American Chemical Society, 125, 9006.

    Google Scholar 

  78. Guiseppi-Elie, A., Lei, C., & Baughman, R. H. (2002). Nanotechnology, 13, 559.

    Google Scholar 

  79. Hecht, H. J., Kalisz, H. M., Hendle, J., Schmid, R. D., & Shomburg, (1993). Journal of Molecular Biology, 229, 153.

    Google Scholar 

  80. Li, J., Ng, H. T., Cassell, A., Fan, W., Chen, H., Ye, Q., et al. (2003). Nanoletters, 3, 597.

    Google Scholar 

  81. Domynguez, E., Rincon, O., & Narvaez, A. (2004). Analytical Chemistry, 76, 3132.

    Google Scholar 

  82. Decher, G. (1997). Science, 277, 1232.

    Google Scholar 

  83. Narvaez, A., Suarez, I., Popescu, I., Katakis, I., & Domynguez, E. (2004). Biosensors & Bioelectronics, 15, 43.

    Google Scholar 

  84. Musameh, M., Wang, J., Merkoci, A., & Lin, Y. (2002). Electrochemistry Communications, 4, 743.

    Google Scholar 

  85. Dryhurst, G., Kadish, K. M., Scheller, F., & Rennerberg, R. (1982). Biological electro-chemistry. New York: Academic Press.

    Google Scholar 

  86. Gorton, L., Lindgren, A., Larsson, T., Munteanu, F. D., Ruzgas, T., & Gazaryan, I. (1999). Analytica Chimica Acta, 400, 91.

    Google Scholar 

  87. Hu, N. (2001). Pure and Applied Chemistry, 73, 1979.

    Google Scholar 

  88. Wang, J., Li, M., Shi, Z., Li, N., & Gu, Z. (2002). Analytical Chemistry, 74, 1993.

    Google Scholar 

  89. Guiseppi-Elie, A., Lei, C., & Baughman, R. H. (2002). Nanotechnology, 13, 559.

    Google Scholar 

  90. Cai, C., & Chen, J. (2004). Analytical Biochemistry, 332, 75.

    Google Scholar 

  91. Li, M., Wang, J., Shi, Z., Li, N., & Gu, Z. (2002). Analytical Chemistry, 74, 1993.

    Google Scholar 

  92. Davis, J. J., Coles, R. J., & Hill, H. A. O. (1997). Journal of Electroanalytical Chemistry, 440, 279.

    Google Scholar 

  93. Wang, S. G., Wang, R., Sellin, P. J., & Zhang, Q. (2004). Biochemical and Biophysical Research Communications, 325, 1433.

    Google Scholar 

  94. Tsang, S. C., Davis, J. J., Green, M. L. H., Hill, H. A. O., Leung, Y. C., & Sadler, P. J. (1995). Journal of the Chemical Society, Chemical Communications, 1803.

    Google Scholar 

  95. Azamian, B. R., Davis, J. J., Coleman, K. S., Bagshaw, C. B., & Green, M. L. H. (2002). Journal of the American Chemical Society, 124, 664.

    Google Scholar 

  96. Shim, M., Kam, N. W. S., Chen, R. J., Li, Y., & Dai, H. (2002). Nano Letters, 2, 285.

    Google Scholar 

  97. Wang, J., & Musameh, M. (2003). Analytical Chemistry, 75, 2075.

    Google Scholar 

  98. Wu, Z., Chen, Z., Du, X., Logan, J. M., Sippel, J., Nikolou, M., et al. (1998). Inorg Chemica Acta, 27, 261.

    Google Scholar 

  99. Maria, D. R., & Gustavo, A. R. (2003). Electrochemistry Communications, 5, 689.

    Google Scholar 

  100. Rubianes, M., & Rivas, G. (2003). Electrochemistry Communications, 5, 689.

    Google Scholar 

  101. Zhao, G., Zhang, L., Wei, X., & Yang, Z. (2003). Electrochemistry Communications, 5, 825.

    Google Scholar 

  102. Cai, C., Chen, J., & Lu, T. (2004). Science in China, Series B: Chemistry, Life Sciences, & Earth Sciences, 47, 113.

    Google Scholar 

  103. Yu, X., Chattopadhyay, D., Galeska, I., Papadimitrakopoulos, F., & Rus-ling, J. F. (2003). Electrochemistry Communications, 5, 408.

    Google Scholar 

  104. Chan, W. C. W., & Nei, S. (1998). Quantum dot bioconjugates for ultra- sensitive nonisotopic detection. Science, 281, 2016.

    Google Scholar 

  105. Hamon, M. A., Chen, J., Hu, H., Chen, Y., Itkis, M. E., Rao, A. M., et al. (1999). Advanced Materials, 11, 834.

    Google Scholar 

  106. Strano, M. S., Dyke, C. A., Usrey, M. L., Barone, P. W., Allen, M. J., Shan, H., et al. (2003). Science, 301, 1519.

    Google Scholar 

  107. Koshio, A., Yudasaka, M., Zhang, M., & Iijima, S. (2001). Nano Letters, 1, 361.

    Google Scholar 

  108. Hiura, H., Ebbesen, T. W., & Tanigaki, K. (1995). Advanced Materials, 7, 275.

    Google Scholar 

  109. Wang, J. X., Li, M. X., Shi, Z. J., Li, N. Q., & Gu, Z. N. (2001). Electrochimica Acta, 47, 651.

    Google Scholar 

  110. Lin, Y., Taylor, S., Li, H. P., Fernando, K. A. S., Qu, L. W., Wang, W., et al. (2004). Journal of Materials Chemistry, 14, 527.

    Google Scholar 

  111. Riggs, J. E., Guo, Z.-X., Carroll, D. L., & Sun, Y. P. (2000). Journal of the American Chemical Society, 122, 5879.

    Google Scholar 

  112. Zhao, B., Hu, H., & Haddon, R. C. (2004). Advanced Functional Materials, 14, 71.

    Google Scholar 

  113. Titus, E., Ali, N., Cabral, G., Ramesh Babu, P., & Gracio, J. (2006) Journal of Materials Engineering and Performance, 2.

    Google Scholar 

  114. Sotiropoulou, S., & Chainiotakis, N. A. (2003). Analytical and Bioanalytical Chemistry, 375, 103.

    Google Scholar 

  115. Xu, J. M. (2003). Nanotube electronics: non-CMOS routes. Proceedings of the IEEE, Special Issue on Nanoelectronics and Giga-scale Systems, 91, 1819–1829.

    Google Scholar 

  116. Fu, K., Huang, W., Lin, Y., Zhang, D., Hanks, T. W., Rao, A. M., & Sun, Y.-P. (2002). Nanotechnology, 2, 457.

    Google Scholar 

  117. Yao, D., Cao, H., Wen, S., Liu, D., Bai, Y., & Zheng, W. (2005). Bioelectrochemistry, 68, 131.

    Google Scholar 

  118. Musameh, M., Wang, J., Merkoci, A., & Lin, Y. (2002). Electrochemistry Communications, 4, 743.

    Google Scholar 

  119. Wang, J., Li, M., Shi, Z., Li, N., & Gu, Z. (2002). Analytical Chemistry, 74, 1993.

    Google Scholar 

  120. Gong, K., Dong, Y., Xiong, S., Chen, Y., & Mao, L. (2004). Biosensors and Bioelectronics, 20, 253.

    Google Scholar 

  121. Zhang, M., Smith, A., & Gorski, W. (2004). Analytical Chemistry, 76, 5045.

    Google Scholar 

  122. Wang, J., & Musameh, M. (2003). Analytical Chemistry, 75, 2075.

    Google Scholar 

  123. Davis, J., Coles, R., & Hill, H. (1997). Electroanalytical Chemistry, 440, 279.

    Google Scholar 

  124. Rubianes, M., & Rivas, G. (2003). Electrochemistry Communications, 5, 689.

    Google Scholar 

  125. Wang, J. (2004). Musameh. Analyst, 129, 1.

    MathSciNet  Google Scholar 

  126. Guo, M., Chen, J., Liu, D., Nie, L., & Yao, S. (2004). Bioelectrochemistry, 29, 29.

    Google Scholar 

  127. Wang, J., Musameh, M., & Lin, Y. (2003). Journal of the American Chemical Society, 125, 2408.

    Google Scholar 

  128. Wang, Z., Liu, J., Liang, Q., Wang, Y., & Luo, G. (2002). Analyst, 127, 653.

    Google Scholar 

  129. Joshi, P., Merchant, S. A., Wang, Y., & Schmidtke, D. (2005). Analytical Chemistry, 77, 3183.

    Google Scholar 

  130. Lin, Y., Lu, F., Tu, Y., & Ren, Z. (2004). Nano Letters, 4, 191.

    Google Scholar 

  131. Guan, W., Li, Y., Chen, Y., Zhang, X., & Hu, G. (2005). Biosensors & Bioelectronics, 21, 508.

    Google Scholar 

  132. Tang, H., Chen, J., Yao, S., Nie, L., Deng, G., & Kuang, Y. (2004). Analytical Biochemistry, 331, 89.

    Google Scholar 

  133. Gao, M., Dai, L., & Wallace, G. (2003). Synthetic Metals, 137, 1393.

    Google Scholar 

  134. Lim, S., Wei, J., Lin, J., Li, Q., & KuaYou, J. (2005). Biosensors & Bioelectronics, 20, 2341.

    Google Scholar 

  135. Ye, J., Wen, Y., Zhang, W., Gan, L., Xu, G., & Sheu, F. (2004). Electrochemistry Communications, 6, 66.

    Google Scholar 

  136. Yang, M., Yang, Y., Liu, Y., Shen, G., & Yu, R. (2006). Biosensors & Bioelectronics, 27, 246.

    Google Scholar 

  137. Joshi, P., Merchant, S. A., Wang, Y., & Schmidtke, D. (2005). Analytical Chemistry, 77, 3183.

    Google Scholar 

  138. Sun, H., & Hu, N. (2005). Analyst, 130, 76.

    Google Scholar 

  139. Mattson, M. P., Haddon, R. C., & Rao, A. M. (2000). Journal of Molecular Medicine, 14, 175.

    Google Scholar 

  140. Zhang, X., Prasad, S., Niyogi, S., Morgan, A., Ozkan, M., & Ozkan, C. S. (2005). Sensors and Actuators B, 106, 843.

    Google Scholar 

  141. Hu, H., Ni, Y., Montana, V., Haddon, R. C., & Parpura, V. (2004). Nanoletters, 4(3), 507.

    Google Scholar 

  142. Bekyarova, E., Ni, Y., Malarkey, E. B., Montana, V., McWilliams, J. L., Haddon, R. C., & Parpura, V. (2005). Journal of Biomedical Nanotechnology, 1, 17.

    Google Scholar 

  143. Kam, N. W. S., Jessop, T. C., Wender, P. A., & Dai, H. (2004). Journal of the American Chemical Society, 126, 6850.

    Google Scholar 

  144. Balavoine, F., Schultz, P., Richard, C., Mallouh, V., Ebbesen, T. W., & Mioskowski, C. (1999). Angewandte Chemie Int Ed, 38, 1912.

    Google Scholar 

  145. Pantarotto, D., Briand, J.-P., Prato, M., & Bianco, A. (2004). Chemical Communications, 16.

    Google Scholar 

  146. Balavoine, F., Schultz, P., Richard, C., Mallouh, V., Ebbesen, T. W., & Mioskowski, C. (1999). Angewandte Chemie Int Ed, 38, 1912.

    Google Scholar 

  147. Guo, Z., Sadler, P. J., & Tsang, S. C. (1998). Advanced Materials, 10, 701.

    Google Scholar 

  148. Recum, V. (Ed.). (1999). Handbook of biomaterials evaluation, scientific, technical and clinical testing of implant materials (2nd ed., p. 915). PA: Taylor and Francis.

    Google Scholar 

  149. Black, J. (1992). Biological performance of materials: Fundamentals of biocompatibility. New York: Marcel Deckker.

    Google Scholar 

  150. Christel, P., Meunier, A., & Lee, A. J. C. (Eds.). (1997). Biological and biomechanical performance of biomaterials (p. 81). Amsterdam, The Netherlands: Elsevier.

    Google Scholar 

  151. Khor, K. A., Fu, L., Lim, V. J. P., & Cheang, P. (2000). The effects of ZrO2 on the phase compositions of plasma sprayed HA/YSZ composite coatings. Materials Science and Engineering A, 276, 160.

    Google Scholar 

  152. Van Blitterswijk, C. A., Grote, J. J., Kuijpers, W., Daems, W. T., & de Groot, K. A. (1986). Biomaterials, 7, 553.

    Google Scholar 

  153. Tancred, D. C., McCormack, B. A. O., & Carr, A. J. (1998). Biomaterials, 19, 1735.

    Google Scholar 

  154. Wang, M., Deb, S., Tanner, K., & Bonfield, W. (1996). In Proceedings of the 7th European Conference on Composite Materials, London, 455.

    Google Scholar 

  155. Hulbert, S. F., & Hench, L. L. (1987). In P. Vineenzini (Ed.), High technology ceramics (Vol. 3). Amsterdam: Elsevier.

    Google Scholar 

  156. Bagambisa, F. B., Joos, U., & Schilli, W. (1993). Journal of Biomedical Research, 27, 1047.

    Google Scholar 

  157. Rodriguez-Lorenzo, L. M., Valler-Regi, M., & Ferreira, J. M. F. (2001). Biomaterials, 22, 583.

    Google Scholar 

  158. Yasuda, H. Y., Mahara, S., Umakoshi, Y., Imatazo, S., & Ebisu, S. (2001). Bio-materials, 21, 2045.

    Google Scholar 

  159. Lupo, F., Kamalakaran, R., Scheu, C., Grobert, N., & Uhle, M. R. (2004). Carbon, 42, 1995.

    Google Scholar 

  160. Siegal, G., van Duynhoven, J., & Baldus, M. (1999). Chemistry & Biology, 3, 530.

    Google Scholar 

  161. Kim, S. H. (1998). Nature Structural Biology, 5, 643.

    Google Scholar 

  162. Wuthrich, K. (2000). Nature Structural Biology, 7, 188.

    Google Scholar 

  163. Bustamante, C., Rivetti, C., & Keller, D. J. (1997). Current Opinion in Structural Biology, 7, 709.

    Google Scholar 

  164. Hansma, H. G. & Pietrasanta, L. I. (1998). Current Opinion in Chemical Biology, 2, 579.

    Google Scholar 

  165. Woolley, A. T., Cheung, C. L., Hafner, J. H., & Lieber, C. M. (2000). Chemistry & Biology, 7, R193–R204.

    Google Scholar 

  166. Kasas, S., Thomson, N. H., Smith, B. L., Hansma, P. K., Miklossy, J., & Hansma, H. G. (1998). International Journal of Imaging Systems and Technology, 8, 151.

    Google Scholar 

  167. Dai, H., Hafner, J. H., Rinzler, A. G., Colbert, D. T., & Smalley, R. E. (1996). Nature, 384, 147.

    Google Scholar 

  168. Wong, S. S., Harper, J. D., Lansbury, P. T, Jr, & Lieber, C. M. (1998). Journal of the American Chemical Society, 120, 603.

    Google Scholar 

  169. Wong, S. S., Woolley, A. T., Odom, T. W., Huang, J.-L., Kim, P., Ve- zenov, D. V., & Lieber, C. V. (1998). Applied Physics Letters, 73, 3465.

    Google Scholar 

  170. Sun, L. F., Xie, S. S., Liu, W., Zhou, W. Y., Liu, Z. Q., Tang, D. S., et al. (2003). Nature, 403, 384.

    Google Scholar 

  171. Nishijima, H., Kamo, S., Akita, S., Nakayama, Y., Hohmura, K. I., Yoshimura, S. H., & Takeyasu, K. (1999). Applied Physics Letters, 74, 4061.

    Google Scholar 

  172. Hafner, J. H., Bronikowski, M. J., Azamian, B. R., Nikolaev, P., Rinzler, A. G., Colbert, D. T., et al. (1998). Chemical Physics Letters, 296, 195.

    Google Scholar 

  173. Nikolaev, P., Bronikowski, M. J., Bradley, R. K., Rohmund, F., Colbert, D. T., Smith, K. A., & Smalley, R. E. (1999). Chemical Physics Letters, 313, 91.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Jackson .

Editor information

Editors and Affiliations

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Okpalugo, T., Ahmed, W., Jackson, M.J. (2016). Applications of Carbon Nanotubes in Bio-Nanotechnology. In: Ahmed, W., Jackson, M. (eds) Surgical Tools and Medical Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-33489-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33489-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33487-5

  • Online ISBN: 978-3-319-33489-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics