Skip to main content

Collision-Free Speed Model for Pedestrian Dynamics

  • Conference paper
  • First Online:
Book cover Traffic and Granular Flow '15

Abstract

We propose in this paper a minimal speed-based pedestrian model for which particle dynamics are intrinsically collision-free. The speed model is an optimal velocity function depending on the agent length (i.e. particle diameter), maximum speed and time gap parameters. The direction model is a weighted sum of exponential repulsion from the neighbours, calibrated by the repulsion rate and distance. The model’s main features like the reproduction of empirical phenomena are analysed by simulation. We point out that phenomena of self-organisation observable in force-based models and field studies can be reproduced by the collision-free model with low computational effort.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chowdhury, D., Santen, L., Schadschneider, A.: Statistical physics of vehicular traffic and some related systems. Phys. Rep. 329(4), 199–329 (2000)

    Article  MathSciNet  Google Scholar 

  2. Degond, P., Appert-Rolland, C., Moussaid, M., Pettré, J., Theraulaz, G.: A hierarchy of heuristic-based models of crowd dynamics. J. Stat. Phys. 152(6), 1033–1068 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  3. Schadschneider, A., Chowdhury, D., Nishinari, K.: Stochastic transport in complex systems: from molecules to vehicles. Elsevier (2010)

    Google Scholar 

  4. Helbing, D., Farkas, I.J., Vicsek, T.: Freezing by heating in a driven mesoscopic system. Phys. Rev. Lett. 84(6), 1240 (2000)

    Article  MATH  Google Scholar 

  5. Helbing, D., Johansson, A., Mathiesen, J., Jensen, M.H., Hansen, A.: Analytical approach to continuous and intermittent bottleneck flows. Phys. Rev. Lett. 97(16), 168001 (2006)

    Google Scholar 

  6. GmbH, T.H.: Handbuch pedgo 2, pedgo editor 2. http://www.evacuation-simulation.com

  7. Schneider V.K.R.: Simulating evacuation processes with aseri. In: Pedestrian and Evacuation Dynamics, pp. 303–314 (2002)

    Google Scholar 

  8. AG, P.: PTV Vissim 7.0—User Manual. PTV Group, Haid-und-Neu-Str. 15, D-76131 Karlsruhe, Germany (2014)

    Google Scholar 

  9. Berrou, J.L., Beecham, J., Quaglia, P., Kagarlis, M.A., Gerodimos, A.: Calibration and validation of the legion simulation model using empirical data. In: Pedestrian and Evacuation Dynamics, pp. 167–181 (2005)

    Google Scholar 

  10. Helbing, D.: Traffic and related self-driven many-particle systems. Rev. Mod. Phys. 73(4), 1067 (2001)

    Article  Google Scholar 

  11. Chraibi, M., Seyfried, A., Schadschneider, A.: Generalized centrifugal-force model for pedestrian dynamics. Phys. Rev. E 82(4), 046111 (2010)

    Google Scholar 

  12. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51, 4282–4286 (1995)

    Article  Google Scholar 

  13. Chraibi, M., Seyfried, A., Kemloh, U., Schadschneider, A.: Force-based models of pedestrian dynamics. Netw. Heterog. Media 6, 425–442 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Köster, G., Treml, F., Gödel, M.: Avoiding numerical pitfalls in social force models. Phys. Rev. E 87, 063305 (2013)

    Google Scholar 

  15. Ondřej, J., Pettré, J., Olivier, A.H., Donikian, S.: A synthetic-vision based steering approach for crowd simulation. ACM Trans. Graph. 29, 123 (2010)

    Google Scholar 

  16. Van den Berg, J., Lin, M., Manocha, D.: Reciprocal velocity obstacles for real-time multi-agent navigation. In: IEEE International Conference on Robotics and Automation, 2008. ICRA 2008, pp. 1928–1935. IEEE (2008)

    Google Scholar 

  17. Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles. Int. J. Robot. Res. 17(7), 760–772 (1998)

    Article  Google Scholar 

  18. Maury, B., Venel, J.: Un modle de mouvement de foule. In: ESSAIM 18, 143–152 (2007)

    Google Scholar 

  19. Venel, J.: Integrating strategies in numerical modelling of crowd motion. In: Pedestrian and Evacuation Dynamics 2008, pp. 641–646. Springer (2010)

    Google Scholar 

  20. Guo, R.Y., Wong, S., Huang, H.J., Zhang, P., Lam, W.H.: A microscopic pedestrian-simulation model and its application to intersecting flows. Physica A 389(3), 515–526 (2010)

    Article  Google Scholar 

  21. Pelechano, N., O’Brien, K., Silverman, B., Badler, N.: Crowd simulation incorporating agent psychological models, roles and communication. Technical Report, DTIC Document (2005)

    Google Scholar 

  22. Dietrich, F., Köster, G.: Gradient navigation model for pedestrian dynamics. Phys. Rev. E 89(6), 062801 (2014)

    Google Scholar 

  23. Bando, M., Hasebe, K., Nakayama, A., Shibata, A., Sugiyama, Y.: Dynamical model of traffic congestion and numerical simulation. Phys. Rev. E 51(2), 1035 (1995)

    Article  Google Scholar 

  24. Nakayama, A., Hasebe, K., Sugiyama, Y.: Instability of pedestrian flow and phase structure in a two-dimensional optimal velocity model. Phys. Rev. E 71(3), 036121 (2005)

    Google Scholar 

  25. Monneau, R., Roussignol, M., Tordeux, A.: Invariance and homogenization of an adaptive time gap car-following model. Nonlinear Differ. Equ. Appl. 21(4), 491–517 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  26. Zhang, J., Klingsch, W., Schadschneider, A., Seyfried, A.: Ordering in bidirectional pedestrian flows and its influence on the fundamental diagram. J. Stat. Mech. Theory Exp. 2012(02), P02002 (2012)

    Google Scholar 

  27. Corradi, O., Hjorth, P.G., Starke, J.: Equation-free detection and continuation of a hopf bifurcation point in a particle model of pedestrian flow. SIAM J. Appl. Dyn. Syst. 11(3), 1007–1032 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Tordeux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Tordeux, A., Chraibi, M., Seyfried, A. (2016). Collision-Free Speed Model for Pedestrian Dynamics. In: Knoop, V., Daamen, W. (eds) Traffic and Granular Flow '15. Springer, Cham. https://doi.org/10.1007/978-3-319-33482-0_29

Download citation

Publish with us

Policies and ethics