Skip to main content

Concurrent Atomistic-Continuum Simulation of Defects in Polyatomic Ionic Materials

  • Chapter
  • First Online:
Multiscale Materials Modeling for Nanomechanics

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 245))

Abstract

This chapter reviews a concurrent atomistic-continuum (CAC) method for studying the dynamic behavior of defects in polyatomic materials. The CAC method combines a unified atomistic and continuum formulation of balance laws and a modified finite element method. In this chapter, we show that in the dynamic simulations of strontium titanate (SrTiO3), the CAC method allows the passages of defects, including dislocations and cracks, from the atomistic to the continuum domain without the need for any special numerical treatment. Then the CAC simulation results of the dynamics of defects in single-crystal, bi-crystal, and polycrystalline SrTiO3 are presented. Simulation results show that CAC successfully reproduces crack propagations, dislocation migrations, and the interplay between cracks, dislocations, and grain boundaries in SrTiO3, with a significant reduction in the degrees of freedom compared with atomistically resolved molecular dynamics (MD) simulation. Most importantly, the essential atomistic features of defects, such as the propagation paths of cracks and dislocations, the dissociation of dislocations, the atomic-scale grain boundary (GB) structures, and atomic details for GB interactions with other defects, are retained in the CAC simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Mishin, M. Asta, J. Li, Atomistic modeling of interfaces and their impact on microstructure and properties. Acta Mater. 58, 1117–1151 (2010)

    Article  Google Scholar 

  2. J.P. Hirth, The influence of grain boundaries on mechanical properties. Metall. Trans. A Phys. Metall. Mater. Sci. 3, 3047–3067 (1972)

    Google Scholar 

  3. Y. Cheng, M. Mrovec, P. Gumbsch, Atomistic simulations of interactions between the ½ 〈111〉 edge dislocation and symmetric tilt grain boundaries in tungsten. Philos. Mag. 88, 547–560 (2008)

    Article  Google Scholar 

  4. Z.H. Jin, P. Gumbsch, K. Albe, E. Ma, K. Lu, H. Gleiter, H. Hahn, Interactions between non-screw lattice dislocations and coherent twin boundaries in face-centered cubic metals. Acta Mater. 56, 1126–1135 (2008)

    Article  Google Scholar 

  5. Y. Chen, J. Zimmerman, A. Krivtsov, D.L. McDowell, Assessment of atomistic coarse-graining methods. Int. J. Eng. Sci. 49, 1337–1349 (2011)

    Article  Google Scholar 

  6. M. Dewald, W.A. Curtin, Multiscale modeling of dislocation/grain boundary interactions: I. Edge dislocations impinging on ∑11 (1 1 3) tilt boundary in Al. Model. Simul. Mater. Sci. Eng. 15, S193–S215 (2007)

    Article  Google Scholar 

  7. M. Dewald, W.A. Curtin, Multiscale modeling of dislocation/grain boundary interactions. II. Screw dislocations impinging on tilt boundaries in Al. Philos. Mag. 87, 4615–4641 (2007)

    Article  Google Scholar 

  8. M. Dewald, W.A. Curtin, Multiscale modeling of dislocation/grain-boundary interactions: III. 60° dislocations impinging on ∑3, ∑9 and ∑11 tilt boundaries in Al. Model. Simul. Mater. Sci. Eng. 19, 055002 (2011)

    Article  Google Scholar 

  9. J. Marshall, K. Dayal, Atomistic-to-continuum multiscale modeling with long-range electrostatic interactions in ionic solids. J. Mech. Phys. Solids 62, 137–162 (2014)

    Article  Google Scholar 

  10. Y. Chen, J.D. Lee, Atomistic formulation of a multiscale theory for nano/micro physics. Philos. Mag. 85, 4095–4126 (2005)

    Article  Google Scholar 

  11. Y. Chen, Local stress and heat flux in atomistic systems involving three-body forces. J. Chem. Phys. 124, 054113 (2006)

    Article  Google Scholar 

  12. Y. Chen, Reformulation of microscopic balance equations for multiscale materials modeling. J. Chem. Phys. 130, 134706 (2009)

    Article  Google Scholar 

  13. Y. Chen, J.D. Lee, L. Xiong, Stresses and strains at nano/micro scales. J. Mech. Mater. Struct. 1(4), 705–723 (2006)

    Article  Google Scholar 

  14. Y. Chen, J.D. Lee, Conservation laws at nano/micro scales. J. Mech. Mater. Struct. 1(4), 681–704 (2006)

    Article  Google Scholar 

  15. Q. Deng, L. Xiong, Y. Chen, Coarse-graining atomistic dynamics of brittle fracture by finite element method. Int. J. Plast. 26, 1402–1414 (2010)

    Article  Google Scholar 

  16. Q. Deng, Y. Chen, A coarse-grained atomistic method for 3D dynamic fracture simulation. Int. J. Multiscale Comput. Eng. 11, 227–237 (2013)

    Article  Google Scholar 

  17. L. Xiong, G. Tucker, D.L. McDowell, Y. Chen, Coarse-grained atomistic simulation of dislocations. J. Mech. Phys. Solids 59, 160–177 (2011)

    Article  Google Scholar 

  18. L. Xiong, Q. Deng, G. Tucker, D.L. McDowell, Y. Chen, Coarse-grained atomistic simulations of dislocations in Al, Ni and Cu crystals. Int. J. Plast. 38, 86–101 (2012)

    Article  Google Scholar 

  19. L. Xiong, S. Xu, D.L. McDowell, Y. Chen, Concurrent atomistic–continuum simulations of dislocation–void interactions in fcc crystals. Int. J. Plast. 65, 33–42 (2015)

    Article  Google Scholar 

  20. L. Xiong, D.L. McDowell, Y. Chen, Sub-THz Phonon drag on dislocations by coarse-grained atomistic simulations. Int. J. Plast. 55, 268–278 (2014)

    Article  Google Scholar 

  21. L. Xiong, X. Chen, N. Zhang, D.L. McDowell, Y. Chen, Prediction of phonon properties of 1D polyatomic systems using concurrent atomistic–continuum simulation. Arch. Appl. Mech. 84, 1665–1675 (2014)

    Article  Google Scholar 

  22. L. Xiong, Q. Deng, G. Tucker, D.L. McDowell, Y. Chen, A concurrent scheme for passing dislocations from atomistic to continuum domains. Acta Mater. 60, 899–913 (2012)

    Article  Google Scholar 

  23. L. Xiong, Y. Chen, Coarse-grained simulations of single-crystal silicon. Modell. Simul. Mater. Sci. Eng. 17, 035002 (2009)

    Article  Google Scholar 

  24. L. Xiong, Y. Chen, Multiscale modeling and simulation of single-crystal MgO through an atomistic field theory. Int. J. Solids Struct. 46, 1448–1455 (2009)

    Article  Google Scholar 

  25. S. Xu, R. Che, L. Xiong, Y. Chen, D.L. McDowell, A quasistatic implementation of the concurrent atomistic-continuum method for FCC crystals. Int. J. Plast. 72, 91–126 (2015)

    Article  Google Scholar 

  26. J.H. Irving, J.G. Kirkwood, The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J. Chem. Phys. 18, 817–829 (1950)

    Article  Google Scholar 

  27. R.J. Hardy, Formulas for determining local properties in molecular dynamics simulations: shock waves. J. Chem. Phys. 76, 622–628 (1982)

    Article  Google Scholar 

  28. J.G. Kirkwood, The statistical mechanical theory of transport processes I. General theory. J. Chem. Phys. 14, 180–201 (1946)

    Article  Google Scholar 

  29. C. Kittel, Introduction to Solid State Physics (John Wiley & Sons Inc, New York, 1956)

    Google Scholar 

  30. M. Born, K. Huang, Dynamical Theory of Crystal Lattices (Oxford University Press, London, 2014)

    Google Scholar 

  31. Y. Chen, J.D. Lee, L. Xiong, A generalized continuum theory and its relation to micromorphic theory. J. Eng. Mech. 135, 149–155 (2009)

    Article  Google Scholar 

  32. Y. Chen, J.D. Lee, A. Eskandarian, Atomistic viewpoint of the applicability of microcontinuum theories. Int. J. Solids Struct. 41, 2085–2097 (2004)

    Article  Google Scholar 

  33. Y. Chen, J.D. Lee, Connecting molecular dynamics to micromorphic theory. (I). Instantaneous and averaged mechanical variables. Phys. A Stat. Mech. Appl. 322, 359–376 (2003)

    Article  Google Scholar 

  34. Y. Chen, J.D. Lee, Connecting molecular dynamics to micromorphic theory. (II). Balance laws. Phys. A Stat. Mech. Appl. 322, 377–392 (2003)

    Article  Google Scholar 

  35. Y. Chen, J.D. Lee, Multiscale modeling of polycrystalline silicon. Int. J. Eng. Sci. 42, 987–1000 (2004)

    Article  Google Scholar 

  36. Y. Chen, J.D. Lee, A. Eskandarian, Micropolar theory and its applications to mesoscopic and microscopic problems. Comput. Model. Eng. Sci. 5, 35–43 (2004)

    Google Scholar 

  37. Y. Chen, J.D. Lee, Determining material constants in micromorphic theory through phonon dispersion relations. Int. J. Eng. Sci. 41, 871–886 (2003)

    Article  Google Scholar 

  38. Y. Chen, J.D. Lee, A. Eskandarian, Examining the physical foundation of continuum theories from the viewpoint of phonon dispersion relation. Int. J. Eng. Sci. 41, 61–83 (2003)

    Article  Google Scholar 

  39. A.C. Eringen, Mechanics of Micromorphic Continua (Springer, Heidelberg, 1958)

    Google Scholar 

  40. X. Zeng, Y. Chen, J.D. Lee, Determining material constants in nonlocal micromorphic theory through phonon dispersion relations. Int. J. Eng. Sci. 44, 1334–1345 (2006)

    Article  Google Scholar 

  41. C.J. Fennell, J.D. Gezelter, Is the Ewald summation still necessary? Pairwise alternatives to the accepted standard for long-range electrostatics. J. Chem. Phys. 124, 234104 (2006)

    Article  Google Scholar 

  42. D. Wolf, P. Keblinski, S.R. Phillpot, J. Eggebrecht, Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r summation. J. Chem. Phys. 110, 8254–8282 (1999)

    Article  Google Scholar 

  43. H. Ohta, Thermoelectrics based on strontium titanate. Mater. Today 10, 44–49 (2007)

    Article  Google Scholar 

  44. C.L. Canedy, H. Li, S.P. Alpay, L. Salamanca-Riba, A.L. Roytburd, R. Ramesh, Dielectric properties in heteroepitaxial Ba0.6Sr0.4TiO3 thin films: effect of internal stresses and dislocation-type defects. Appl. Phys. Lett. 77, 1695–1697 (2000)

    Article  Google Scholar 

  45. M.W. Chu, I. Szafraniak, R. Scholz, C. Harnagea, D. Hesse et al., Impact of misfit dislocations on the polarization instability of epitaxial nanostructured ferroelectric perovskites. Nat. Mater. 3, 87–90 (2004)

    Article  Google Scholar 

  46. S. Yang, L. Xiong, Q. Deng, Y. Chen, Concurrent atomistic and continuum simulation of strontium titanate. Acta Mater. 61, 89–102 (2013)

    Article  Google Scholar 

  47. S. Yang, Y. Chen, Concurrent atomistic and continuum simulation of bi-crystal strontium titanate with tilt grain boundary. Proc. Math. Phys. Eng. Sci. 471, 20140758 (2009)

    Article  Google Scholar 

  48. S. Yang, N. Zhang, Y. Chen, Concurrent atomistic and continuum simulation of polycrystalline strontium titanate. Philos. Mag. 95, 2697–2716 (2015)

    Article  Google Scholar 

  49. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)

    Article  Google Scholar 

  50. B. Thomas, N. Marks, B.D. Begg, Developing pair potentials for simulating radiation damage in complex oxides. Nucl. Instrum. Methods Phys. Res. Sect. B 228, 288–292 (2005)

    Article  Google Scholar 

  51. D. Spearot, D. McDowell, Atomistic modeling of grain boundaries and dislocation processes in metallic polycrystalline materials. J. Eng. Mater. Technol. 131, 041204 (2009)

    Article  Google Scholar 

  52. H.S. Lee, T. Mizoguchi, J. Mistui et al., Defect energetics in SrTiO3 symmetric tilt grain boundaries. Phys. Rev. B 83, 104110 (2011)

    Article  Google Scholar 

  53. M. Imaeda, T. Mizoguchi, Y. Sato et al., Atomic structure, electronic structure, and defect energetics in [001](310) ∑5 grain boundaries of SrTiO3 and BaTiO3. Phys. Rev. B 78, 245320 (2008)

    Article  Google Scholar 

  54. N. Benedeck, A.S. Chua, C. Elsässer, A. Sutton, M. Finnis, Interatomic potentials for strontium titanate: an assessment of their transferability and comparison with density functional theory. Phys. Rev. B 78, 064110 (2008)

    Article  Google Scholar 

  55. B. Thomas, N. Marks, B.D. Begg, Defects and threshold displacement energies in SrTiO3 perovskite using atomistic computer simulations. Nucl. Inst. Methods Phys. Res. B 254, 211–218 (2007)

    Article  Google Scholar 

  56. R.A. Schultz, M.C. Jensen, R.C. Bradt, Single crystal cleavage of brittle materials. Int. J. Fract. 65, 291–312 (1994)

    Article  Google Scholar 

  57. A. Suzuki, M.F.X. Gigliotti, P.R. Subramanian, Novel technique for evaluating grain boundary fracture strength in metallic materials. Scr. Mater. 64, 1063–1066 (2011)

    Article  Google Scholar 

  58. K. Yang, N. Ho, H. Lu, Deformation microstructure in (001) Single crystal strontium titanate by Vickers indentation. J. Am. Ceram. Soc. 92, 2345–2353 (2009)

    Article  Google Scholar 

  59. N. Doukhan, J.C. Doukhan, Dislocations in perovskites BaTiO3 and CaTiO3. Phys. Chem. Miner. 13, 403–410 (1986)

    Google Scholar 

  60. J.P. Poirier, J. Peyronneau, J.Y. Gesland, G. Brebec, Viscosity and conductivity of the lower mantle; an experimental study on a MgSiO3 perovskite analogue, KZnF3. Phys. Earth Planet. Inter. 32, 273–287 (1983)

    Article  Google Scholar 

  61. V.B. Shenoy, R. Philips, E.B. Tadmor, Nucleation of dislocations beneath a plane strain indenter. J. Mech. Phys. Solids 48, 649–673 (2000)

    Article  Google Scholar 

  62. J. Li, AtomEye: an efficient atomistic configuration viewer. Model. Simul. Mater. Sci. Eng. 11, 173 (2003)

    Article  Google Scholar 

  63. K. Matsunaga, S. Li, C. Iwamoto, T. Yamamoto, Y. Ikuhara, In situ observation of crack propagation in magnesium oxide ceramics. Nanotechnology 15, S376–S381 (2004)

    Article  Google Scholar 

  64. M. Castillo-Rodriguez, W. Sigle, Dislocation dissociation and stacking-fault energy calculation in strontium titanate. Scr. Mater. 62, 270–273 (2010)

    Article  Google Scholar 

  65. P. Hirel, P. Marton, M. Mrovec, C. Elsässer, Theoretical investigation of {110} generalized stacking faults and their relation to dislocation behavior in perovskite oxides. Acta Mater. 58, 6072–6079 (2010)

    Article  Google Scholar 

  66. W. Sigle, C. Sarbu, D. Brunner, M. Ruhle, Dislocations in plastically deformed SrTiO3. Philos. Mag. 86, 4809–4821 (2006)

    Article  Google Scholar 

  67. O. Bernard, M. Andrieux, S. Poissonnet, A.M. Huntz, Mechanical behaviour of ferroelectric films on perovskite substrate. J. Eur. Ceram. Soc. 24, 763 (2004)

    Article  Google Scholar 

  68. P. Paufler, B. Bergk, M. Reibold, A. Belger, N. Patzke, D. Meyer, Why is SrTiO3 much stronger at nanometer than at centimeter scale? Solid State Sci. 8, 782–792 (2006)

    Article  Google Scholar 

  69. D. Farkas, Atomistic simulations of metallic microstructures. Curr. Opin. Solid State Mater. Sci. 17, 284–297 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This material is based upon the work supported by Department of Energy under award number DOE/DE-SC0006539. The CAC computer code in its present form is a culmination of developments supported in part by National Science Foundation under Award Numbers CMMI-1233113 and CMMI-1129976. This chapter draws on material previously published in [46–48].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengfeng Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yang, S., Chen, Y. (2016). Concurrent Atomistic-Continuum Simulation of Defects in Polyatomic Ionic Materials. In: Weinberger, C., Tucker, G. (eds) Multiscale Materials Modeling for Nanomechanics. Springer Series in Materials Science, vol 245. Springer, Cham. https://doi.org/10.1007/978-3-319-33480-6_8

Download citation

Publish with us

Policies and ethics