Skip to main content

Multiscale Modeling of Thin Liquid Films

  • Chapter
  • First Online:
Multiscale Materials Modeling for Nanomechanics

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 245))

Abstract

Thin liquid films are ubiquitous in natural phenomena including frost heave, foams and emulsions, and cornea of human eyes, as well as in industrial processes such as phase change heat transfer, gas adsorption, chemical and food processing, etc. The stability of thin liquid films is important in these processes since the rupture of the thin films can lead to dramatic changes in their desired properties. In this study, a multiscale modeling approach that integrates molecular dynamics simulations and continuum-level modeling is introduced to investigate the effect of nanostructures and electrostatic interactions on meniscus shape and disjoining pressure for thin liquid films. The theoretical model is developed based on the minimization of free energy, the Derjaguin approximation, and the disjoining pressure theory for flat surfaces, and is verified by using the molecular dynamics (MD) simulations for a water-gold and a water-alumina system with both triangular and square nanostructures of varying depth and film thickness. For all cases simulated, disjoining pressure increases with nanostructure depth. The wave amplitude of the meniscus increases monotonically with increasing nanostructure depth and decreasing thin film thickness. The results also show that the electrostatic interactions enhance the disjoining pressure, thereby making the meniscus more conformal to the nanostructured surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.M. Mate, Spreading kinetics of lubricant droplets on magnetic recording disks. Tribol. Lett. 51(3), 385–395 (2013). doi:10.1007/s11249-013-0171-5

    Article  Google Scholar 

  2. K. Ono, Diffusion equation for spreading and replenishment in submonolayer lubricant film. Tribol. Lett. 57(2), 1–14 (2015). doi:10.1007/s11249-014-0455-4

    Article  Google Scholar 

  3. Y. Li, F. Wang, H. Liu, H. Wu, Nanoparticle-tuned spreading behavior of nanofluid droplets on the solid substrate. Microfluid. Nanofluid. 18(1), 111–120 (2015). doi:10.1007/s10404-014-1422-y

    Article  Google Scholar 

  4. D. Wasan, A. Nikolov, K. Kondiparty, The wetting and spreading of nanofluids on solids: role of the structural disjoining pressure. Curr. Opin. Colloid Interface Sci. 16(4), 344–349 (2011). doi:10.1016/j.cocis.2011.02.001

    Article  Google Scholar 

  5. J.L. Plawsky, A.G. Fedorov, S.V. Garimella, H.B. Ma, S.C. Maroo, L. Chen, Y. Nam, Nano- and microstructures for thin-film evaporation—a review. Nanoscale Microscale Thermophys. Eng. 18(3), 251–269 (2014). doi:10.1080/15567265.2013.878419

    Article  Google Scholar 

  6. R. Xiao, S.C. Maroo, E.N. Wang, Negative pressures in nanoporous membranes for thin film evaporation. Appl. Phys. Lett. 102(12) (2013). doi:10.1063/1.4798243

    Google Scholar 

  7. K.R. Mecke, J. Krim, Adsorption isotherms and thermal fluctuations. Phys. Rev. B Condens. Matter 53(4), 2073–2082 (1996). doi:10.1103/PhysRevB.53.2073

    Article  Google Scholar 

  8. V. Panella, R. Chiarello, J. Krim, Adequacy of the Lifshitz theory for certain thin adsorbed films. Phys. Rev. Lett. 76(19), 3606–3609 (1996). doi:10.1103/PhysRevLett.76.3606

    Article  Google Scholar 

  9. K.S. Birdi, Surface and Colloid Chemistry: Principles and Applications (CRC Press, London, 2009)

    Book  Google Scholar 

  10. V.P. Carey, Liquid Vapor Phase Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment, 2nd edn. (Taylor & Francis, London, 2007)

    Google Scholar 

  11. J.S. Wexler, A. Grosskopf, M. Chow, Y. Fan, I. Jacobi, H.A. Stone, Robust liquid-infused surfaces through patterned wettability. Soft Matter 11(25), 5023–5029 (2015). doi:10.1039/C5SM00611B

    Article  Google Scholar 

  12. S. Narayanan, A.G. Fedorov, Y.K. Joshi, Heat and mass transfer during evaporation of thin liquid films confined by nanoporous membranes subjected to air jet impingement. Int. J. Heat Mass Transfer 58(1–2), 300–311 (2013). doi:10.1016/j.ijheatmasstransfer.2012.11.015

    Article  Google Scholar 

  13. Y. Nam, S. Sharratt, G. Cha, Y.S. Ju, Characterization and modeling of the heat transfer performance of nanostructured Cu micropost wicks. J. Heat Transfer 133(10), 101502 (2011). doi:10.1115/1.4004168

    Article  Google Scholar 

  14. T.-S. Wong, S.H. Kang, S.K.Y. Tang, E.J. Smythe, B.D. Hatton, A. Grinthal, J. Aizenberg, Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477(7365), 443–447 (2011)

    Article  Google Scholar 

  15. B.V. Derjaguin, Y.I. Rabinovich, N.V. Churaev, Direct measurement of molecular forces. Nature 272(5651), 313–318 (1978)

    Article  Google Scholar 

  16. J.N. Israelachvili, Intermolecular and Surface Forces: Third Revised Edition (Elsevier Science, San Diego, 2011)

    Google Scholar 

  17. P.C. Wayner Jr., Y.K. Kao, L.V. LaCroix, The interline heat-transfer coefficient of an evaporating wetting film. Int. J. Heat Mass Transfer 19(5), 487–492 (1976). doi:10.1016/0017-9310(76)90161-7

    Article  Google Scholar 

  18. H.C. Hamaker, The London—van der Waals attraction between spherical particles. Physica 4(10), 1058–1072 (1937). doi:10.1016/S0031-8914(37)80203-7

    Article  Google Scholar 

  19. I.E. Dzyaloshinskii, E.M. Lifshitz, L.P. Pitaevskii, The general theory of van der Waals forces. Adv. Phys. 10(38), 165–209 (1961). doi:10.1080/00018736100101281

    Article  Google Scholar 

  20. E.M. Lifshitz, The theory of molecular attractive forces between solids. Sov. Phys. - JETP 2(1), 73–83 (1956)

    Google Scholar 

  21. B. Ninham, V.A. Parsegian, G. Weiss, On the macroscopic theory of temperature-dependent van der Waals forces. J. Stat. Phys. 2(4), 323–328 (1970). doi:10.1007/BF01020441

    Article  Google Scholar 

  22. M.M. Kohonen, H.K. Christenson, Adsorption from pure and mixed vapours of n-hexane and n-perfluorohexane. Eur. Phys. J. E 6(4), 315–323 (2001). doi:10.1007/s10189-001-8046-4

    Article  Google Scholar 

  23. A.P. Bowles, Y.-T. Hsia, P.M. Jones, L.R. White, J.W. Schneider, Quasi-equilibrium AFM measurement of disjoining pressure in lubricant nanofilms II: effect of substrate materials. Langmuir 25(4), 2101–2106 (2009). doi:10.1021/la8024638

    Article  Google Scholar 

  24. M. Ojha, A. Chatterjee, G. Dalakos, P.C. Wayner, J.L. Plawsky, Role of solid surface structure on evaporative phase change from a completely wetting corner meniscus. Phys. Fluids. 22(5) (2010). doi:10.1063/1.3392771

    Google Scholar 

  25. B.V. Derjaguin, N.V. Churaev, Structural component of disjoining pressure. J. Colloid Interface Sci. 49(2), 249–255 (1974). doi:10.1016/0021-9797(74)90358-0

    Article  Google Scholar 

  26. V.P. Carey, A.P. Wemhoff, Disjoining pressure effects in ultra-thin liquid films in micropassages—comparison of thermodynamic theory with predictions of molecular dynamics simulations. J. Heat Transfer 128(12), 1276–1284 (2006). doi:10.1115/1.2349504

    Article  Google Scholar 

  27. H. Hu, H.-F. Ji, Y. Sun, The effect of oxygen vacancies on water wettability of a ZnO surface. Phys. Chem. Chem. Phys. 15(39), 16557–16565 (2013). doi:10.1039/C3CP51848E

    Article  Google Scholar 

  28. H. Hu, Y. Sun, Molecular dynamics simulations of disjoining pressure effect in ultra-thin water film on a metal surface. Appl. Phys. Lett. 103(26), 263110 (2013). doi:10.1063/1.4858469

    Article  Google Scholar 

  29. J.G. Weng, S. Park, J.R. Lukes, C.L. Tien, Molecular dynamics investigation of thickness effect on liquid films. J. Chem. Phys. 113(14), 5917–5923 (2000)

    Article  Google Scholar 

  30. B.V. Derjaguin, N.V. Churaev, V.M. Muller, Surface Forces (Consultants Bureau, New York, 1987)

    Book  Google Scholar 

  31. M.O. Robbins, D. Andelman, J.-F. Joanny, Thin liquid films on rough or heterogeneous solids. Phys. Rev. A 43(8), 4344–4354 (1991)

    Article  Google Scholar 

  32. H. Hu, C.R. Weinberger, Y. Sun, Effect of nanostructures on the meniscus shape and disjoining pressure of ultrathin liquid film. Nano Lett. 14(12), 7131–7137 (2014). doi:10.1021/nl5037066

    Article  Google Scholar 

  33. H. Hu, C.R. Weinberger, Y. Sun, Model of meniscus shape and disjoining pressure of thin liquid films on nanostructured surfaces with electrostatic interactions. J. Phys. Chem. C 119(21), 11777–11785 (2015). doi:10.1021/acs.jpcc.5b03250

    Article  Google Scholar 

  34. H.J. Butt, K. Graf, M. Kappl, Physics and Chemistry of Interfaces (Wiley, Weinheim, 2003)

    Book  Google Scholar 

  35. D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Elsevier Science, San Diego, 2001)

    Google Scholar 

  36. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1991)

    Google Scholar 

  37. R.T. Cygan, J.-J. Liang, A.G. Kalinichev, Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. J. Phys. Chem. B 108(4), 1255–1266 (2004). doi:10.1021/jp0363287

    Article  Google Scholar 

  38. H.W. Horn, W.C. Swope, J.W. Pitera, J.D. Madura, T.J. Dick, G.L. Hura, T. Head-Gordon, Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. J. Chem. Phys. 120(20), 9665–9678 (2004). doi:10.1063/1.1683075

    Article  Google Scholar 

  39. K. Tay, F. Bresme, Hydrogen bond structure and vibrational spectrum of water at a passivated metal nanoparticle. J. Mater. Chem. 16(20), 1956–1962 (2006). doi:10.1039/B600252h

    Article  Google Scholar 

  40. M.S. Daw, S.M. Foiles, M.I. Baskes, The embedded-atom method—a review of theory and applications. Mater Sci Rep 9(7–8), 251–310 (1993)

    Article  Google Scholar 

  41. S. Plimpton, Fast parallel algorithms for short-range molecular-dynamics. J. Comput. Phys. 117(1), 1–19 (1995)

    Article  Google Scholar 

  42. A. Harasima, Molecular theory of surface tension, in Advances in Chemical Physics, I.Prigogine and P. Debye, (Wiley, New York, 2007), pp. 203–237

    Google Scholar 

  43. S.P. Adiga, P. Zapol, L.A. Curtiss, Atomistic simulations of amorphous alumina surfaces. Phys. Rev. B 74(6), 064204 (2006)

    Article  Google Scholar 

  44. H. Hu, Y. Sun, Effect of nanopatterns on Kapitza resistance at a water-gold interface during boiling: a molecular dynamics study. J. Appl. Phys. 112(5), 053508-1–053508-6 (2012)

    Google Scholar 

  45. A.E. Ismail, G.S. Grest, M.J. Stevens, Capillary waves at the liquid-vapor interface and the surface tension of water. J. Chem. Phys. 125(1), 014702 (2006). doi:10.1063/1.2209240

    Article  Google Scholar 

  46. G. Lu, H. Hu, Y. Duan, Y. Sun, Wetting kinetics of water nano-droplet containing non-surfactant nanoparticles: a molecular dynamics study. Appl. Phys. Lett. 103(25), 253104 (2013). doi:10.1063/1.4837717

    Article  Google Scholar 

  47. A. Rahman, Correlations of in the motion of atoms in liquid argon. Phys. Rev. 136 A405–A411 (1964)

    Google Scholar 

  48. Z. Tian, H. Hu, Y. Sun, A molecular dynamics study of effective thermal conductivity in nanocomposites. Int. J. Heat Mass Transfer 61, 577–582 (2013). doi:10.1016/j.ijheatmasstransfer.2013.02.023

    Article  Google Scholar 

  49. N.H. March, M.P. Tosi, Liquid State Physics (World Scientific, Hackensack, 2002)

    Google Scholar 

  50. C. Vega, E. de Miguel, Surface tension of the most popular models of water by using the test-area simulation method. J. Chem. Phys. 126(15) (2007). doi:10.1063/1.2715577

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hu, H., Sun, Y. (2016). Multiscale Modeling of Thin Liquid Films. In: Weinberger, C., Tucker, G. (eds) Multiscale Materials Modeling for Nanomechanics. Springer Series in Materials Science, vol 245. Springer, Cham. https://doi.org/10.1007/978-3-319-33480-6_17

Download citation

Publish with us

Policies and ethics