Skip to main content

Modeling of Lithiation in Silicon Electrodes

  • Chapter
  • First Online:
Multiscale Materials Modeling for Nanomechanics

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 245))

  • 3460 Accesses

Abstract

Energy is the lifeblood of modern society. Lithium-ion batteries are critically important for portable electronics, electric vehicles, and grid-level energy storage. Silicon is a promising high-capacity electrode material for next-generation lithium-ion batteries. However, it is prone to electrochemically induced mechanical degradation that can consume active lithium and result in fast capacity fade. In this chapter, we present the continuum and atomistic models of deformation and stress generation during electrochemical lithiation of silicon particles and thin films. The associated simulation results are compared with in situ and ex situ experiments, thus providing insights into electrochemically driven mechanical degradation in silicon electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414(6861), 359–367 (2001)

    Article  Google Scholar 

  2. L.Y. Beaulieu, K.W. Eberman, R.L. Turner, L.J. Krause, J.R. Dahn, Colossal reversible volume changes in lithium alloys. Electrochem. Solid-State Lett. 4(9), A137–A140 (2001)

    Article  Google Scholar 

  3. C.K. Chan, H.L. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3(1), 31–35 (2008)

    Article  Google Scholar 

  4. R.A. Huggins, W.D. Nix, Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems. Ionics 6, 57–63 (2000)

    Article  Google Scholar 

  5. X.H. Liu, H. Zheng, L. Zhong, S. Huang, K. Karki, L.Q. Zhang, Y. Liu, A. Kushima, W.T. Liang, J.W. Wang, J.-H. Cho, E. Epstein, S.A. Dayeh, S.T. Picraux, T. Zhu, J. Li, J.P. Sullivan, J. Cumings, C. Wang, S.X. Mao, Z.Z. Ye, S. Zhang, J.Y. Huang, Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett. 11(8), 3312–3318 (2011)

    Article  Google Scholar 

  6. X.H. Liu, L. Zhong, S. Huang, S.X. Mao, T. Zhu, J.Y. Huang, Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6(2), 1522–1531 (2012)

    Article  Google Scholar 

  7. X.H. Liu, J.W. Wang, S. Huang, F. Fan, X. Huang, Y. Liu, S. Krylyuk, J. Yoo, S.A. Dayeh, A.V. Davydov, S.X. Mao, S.T. Picraux, S. Zhang, J. Li, T. Zhu, J.Y. Huang, In situ atomic-scale imaging of electrochemical lithiation in silicon. Nat. Nanotechnol. 7(11), 749–756 (2012)

    Article  Google Scholar 

  8. M.T. McDowell, S.W. Lee, W.D. Nix, Y. Cui, 25th Anniversary Article: understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv. Mater. 25(36), 4966–4984 (2013)

    Article  Google Scholar 

  9. J.W. Wang, Y. He, F. Fan, X.H. Liu, S. Xia, Y. Liu, C.T. Harris, H. Li, J.Y. Huang, S.X. Mao, T. Zhu, Two-phase electrochemical lithiation in amorphous silicon. Nano Lett. 13(2), 709–715 (2013)

    Article  Google Scholar 

  10. V.A. Sethuraman, M.J. Chon, M. Shimshak, V. Srinivasan, P.R. Guduru, In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation. J. Power Sources 195(15), 5062–5066 (2010)

    Article  Google Scholar 

  11. X. Wang, F. Fan, J. Wang, H. Wang, S. Tao, A. Yang, Y. Liu, H.B. Chew, S.X. Mao, T. Zhu, S. Xia, High damage tolerance of electrochemically lithiated silicon. Nat. Commun. 6, 8417 (2015)

    Article  Google Scholar 

  12. Z. Ting, Mechanics of high-capacity electrodes in lithium-ion batteries. Chin. Phys. B 25(1), 014601 (2016)

    Article  Google Scholar 

  13. S. Huang, F. Fan, J. Li, S.L. Zhang, T. Zhu, Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries. Acta Mater. 61, 4354–4364 (2013)

    Article  Google Scholar 

  14. F. Fan, S. Huang, H. Yang, M. Raju, D. Datta, V.B. Shenoy, A.C.T. van Duin, S. Zhang, T. Zhu, Mechanical properties of amorphous LixSi alloys: a reactive force field study. Model. Simul. Mater. Sci. Eng. 21(7), 074002 (2013)

    Article  Google Scholar 

  15. X.H. Liu, Y. Liu, A. Kushima, S.L. Zhang, T. Zhu, J. Li, J.Y. Huang, In situ TEM experiments of electrochemical lithiation and delithiation of individual nanostructures. Adv. Energy Mater. 2(7), 722–741 (2012)

    Article  Google Scholar 

  16. B. Hertzberg, J. Benson, G. Yushin, Ex-situ depth-sensing indentation measurements of electrochemically produced Si-Li alloy films. Electrochem. Commun. 13(8), 818–821 (2011)

    Article  Google Scholar 

  17. M.J. Chon, V.A. Sethuraman, A. McCormick, V. Srinivasan, P.R. Guduru, Real-time measurement of stress and damage evolution during initial lithiation of crystalline silicon. Phys. Rev. Lett. 107(4), 045503 (2011)

    Article  Google Scholar 

  18. S.K. Soni, B.W. Sheldon, X.C. Xiao, M.W. Verbrugge, D. Ahn, H. Haftbaradaran, H.J. Gao, Stress mitigation during the lithiation of patterned amorphous Si islands. J. Electrochem. Soc. 159(1), A38–A43 (2012)

    Article  Google Scholar 

  19. A. Kushima, J.Y. Huang, J. Li, Quantitative fracture strength and plasticity measurements of lithiated silicon nanowires by in situ TEM tensile experiments. ACS Nano 6(11), 9425–9432 (2012)

    Article  Google Scholar 

  20. V.B. Shenoy, P. Johari, Y. Qi, Elastic softening of amorphous and crystalline Li-Si phases with increasing Li concentration: a first-principles study. J. Power Sources 195(19), 6825–6830 (2010)

    Article  Google Scholar 

  21. K.J. Zhao, G.A. Tritsaris, M. Pharr, W.L. Wang, O. Okeke, Z.G. Suo, J.J. Vlassak, E. Kaxiras, Reactive flow in silicon electrodes assisted by the insertion of lithium. Nano Lett. 12(8), 4397–4403 (2012)

    Article  Google Scholar 

  22. Z.W. Cui, F. Gao, Z.H. Cui, J.M. Qu, A second nearest-neighbor embedded atom method interatomic potential for Li-Si alloys. J. Power Sources 207, 150–159 (2012)

    Article  Google Scholar 

  23. V.L. Chevrier, J.R. Dahn, First principles model of amorphous silicon lithiation. J. Electrochem. Soc. 156(6), A454–A458 (2009)

    Article  Google Scholar 

  24. V.L. Chevrier, J.R. Dahn, First principles studies of disordered lithiated silicon. J. Electrochem. Soc. 157(4), A392–A398 (2010)

    Article  Google Scholar 

  25. Q.F. Zhang, W.X. Zhang, W.H. Wan, Y. Cui, E.G. Wang, Lithium insertion in silicon nanowires: an ab initio study. Nano Lett. 10(9), 3243–3249 (2010)

    Article  Google Scholar 

  26. S. Huang, T. Zhu, Atomistic mechanisms of lithium insertion in amorphous silicon. J. Power Sources 196(7), 3664–3668 (2011)

    Article  Google Scholar 

  27. H. Kim, C.Y. Chou, J.G. Ekerdt, G.S. Hwang, Structure and properties of Li-Si alloys: a first-principles study. J. Phys. Chem. C 115(5), 2514–2521 (2011)

    Article  Google Scholar 

  28. P. Johari, Y. Qi, V.B. Shenoy, The mixing mechanism during lithiation of Si negative electrode in Li-ion batteries: an ab initio molecular dynamics study. Nano Lett. 11(12), 5494–5500 (2011)

    Article  Google Scholar 

  29. K.J. Zhao, W.L. Wang, J. Gregoire, M. Pharr, Z.G. Suo, J.J. Vlassak, E. Kaxiras, Lithium-assisted plastic deformation of silicon electrodes in lithium-ion batteries: a first-principles theoretical study. Nano Lett. 11(7), 2962–2967 (2011)

    Article  Google Scholar 

  30. M.K.Y. Chan, C. Wolverton, J.P. Greeley, First principles simulations of the electrochemical lithiation and delithiation of faceted crystalline silicon. J. Am. Chem. Soc. 134(35), 14362–14374 (2012)

    Article  Google Scholar 

  31. S.C. Jung, J.W. Choi, Y.K. Han, Anisotropic volume expansion of crystalline silicon during electrochemical lithium insertion: an atomic level rationale. Nano Lett. 12(10), 5342–5347 (2012)

    Article  Google Scholar 

  32. M. Haghi, L. Anand, Analysis of strain hardening viscoplastic thick-walled sphere and cylinder under external pressure. Int. J. Plast. 7(3), 123–140 (1991)

    Article  Google Scholar 

  33. N.F. Mott, S. Rigo, F. Rochet, A.M. Stoneham, Oxidation of silicon. Philos. Mag. B 60(2), 189–212 (1989)

    Article  Google Scholar 

  34. C.H. Hsueh, A.G. Evans, Oxidation-induced stress and some effects on the behavior of oxide-films. J. Appl. Phys. 54(11), 6672–6686 (1983)

    Article  Google Scholar 

  35. D.S. Franzblau, Computation of ring statistics for network models of solids. Phys. Rev. B 44(10), 4925–4930 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feifei Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fan, F., Zhu, T. (2016). Modeling of Lithiation in Silicon Electrodes. In: Weinberger, C., Tucker, G. (eds) Multiscale Materials Modeling for Nanomechanics. Springer Series in Materials Science, vol 245. Springer, Cham. https://doi.org/10.1007/978-3-319-33480-6_16

Download citation

Publish with us

Policies and ethics