Skip to main content

Quantized Crystal Plasticity Modeling of Nanocrystalline Metals

  • Chapter
  • First Online:
Multiscale Materials Modeling for Nanomechanics

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 245))

Abstract

A quantized crystal plasticity (QCP) model, which connects emerging deformation physics with the unique mechanical properties of nanocrystalline metals, is presented in this chapter. The QCP model adopts a discrete/quantized constitutive flow rule associated with dislocation depinning from grain boundary ledges; in particular, single slip events across nanoscale grains impart large (∼1 %) increments in grain-averaged plastic shear. The flow rule is implemented for a NC assembly within the framework of crystal plasticity. By reproducing aggregate flow stress evolution and internal stress within subpopulations of grains measured by in situ X-ray diffraction tests, the QCP model predicts a transition from continuous and relatively homogenous, multiple-dislocation slip to quantized and highly heterogeneous single dislocation slip as grain size decreases to the nanometer scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.S. Kumar, H. Van Swygenhoven, S. Suresh, Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51(19), 5743–5774 (2003)

    Article  Google Scholar 

  2. M.A. Meyers, A. Mishra, D.J. Benson, Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51(4), 427–556 (2006)

    Article  Google Scholar 

  3. M. Dao, L. Lu, R.J. Asaro, J.T.M. De Hosson, E. Ma, Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 55(12), 4041–4065 (2007)

    Article  Google Scholar 

  4. V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, H. Gleiter, Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation. Nat. Mater. 3(1), 43–47 (2004)

    Article  Google Scholar 

  5. H. Van Swygenhoven, P.M. Derlet, A.G. Froseth, Nucleation and propagation of dislocations in nanocrystalline fcc metals. Acta Mater. 54(7), 1975–1983 (2006)

    Article  Google Scholar 

  6. H. Van Swygenhoven, J.R. Weertman, Deformation in nanocrystalline metals. Mater. Today 9(5), 24–31 (2006)

    Article  Google Scholar 

  7. J. Schiotz, F.D. Di Tolla, K.W. Jacobsen, Softening of nanocrystalline metals at very small grain sizes. Nature 391(6667), 561–563 (1998)

    Article  Google Scholar 

  8. H. Van Swygenhoven, P.M. Derlet, Grain-boundary sliding in nanocrystalline fcc metals. Phys. Rev. B 64(22), 224105 (2001)

    Article  Google Scholar 

  9. L. Li, P.M. Anderson, M.G. Lee, E. Bitzek, P. Derlet, H. Van Swygenhoven, The stress-strain response of nanocrystalline metals: a quantized crystal plasticity approach. Acta Mater. 57(3), 812–822 (2009)

    Article  Google Scholar 

  10. L. Li, M.-G. Lee, P. Anderson, Critical strengths for slip events in nanocrystalline metals: predictions of quantized crystal plasticity simulations. Metall. Mater. Trans. A 42(13), 3875–3882 (2011)

    Article  Google Scholar 

  11. L. Li, S. Van Petegem, H. Van Swygenhoven, P.M. Anderson, Slip-induced intergranular stress redistribution in nanocrystalline Ni. Acta Mater. 60(20), 7001–7010 (2012)

    Article  Google Scholar 

  12. L. Li, M.-G. Lee, P.M. Anderson, Probing the relation between dislocation substructure and indentation characteristics using quantized crystal plasticity. J. Appl. Mech. 79(3), 031009 (2012)

    Article  Google Scholar 

  13. D. Wolf, V. Yamakov, S.R. Phillpot, A. Mukherjee, H. Gleiter, Deformation of nanocrystalline materials by molecular-dynamics simulation: relationship to experiments? Acta Mater. 53(1), 1–40 (2005)

    Article  Google Scholar 

  14. A.G. Froseth, P.M. Derlet, H. Van Swygenhoven, Dislocations emitted from nanocrystalline grain boundaries: nucleation and splitting distance. Acta Mater. 52(20), 5863–5870 (2004)

    Article  Google Scholar 

  15. D. Farkas, A. Frøseth, H. Van Swygenhoven, Grain boundary migration during room temperature deformation of nanocrystalline Ni. Scr. Mater. 55(8), 695–698 (2006)

    Article  Google Scholar 

  16. Y. Mishin, D. Farkas, M.J. Mehl, D.A. Papaconstantopoulos, Interatomic potential for Al and Ni from experimental data and ab initio calculations. Mater. Res. Soc. Symp. Proc. 538, 533 (1999)

    Google Scholar 

  17. E. Bitzek, P.M. Derlet, P. Anderson, H. Van Swygenhoven, The stress-strain response of nanocrystalline metals: a statistical analysis of atomistic simulations. Acta Mater. 56(17), 4846–4857 (2008)

    Article  Google Scholar 

  18. R.J. Asaro, A. Needleman, Overview no. 42 texture development and strain hardening in rate dependent polycrystals. Acta Metall. 33(6), 923–953 (1985)

    Article  Google Scholar 

  19. D. Peirce, R.J. Asaro, A. Needleman, An analysis of nonuniform and localized deformation in ductile single crystals. Acta Metall. 30(6), 1087–1119 (1982)

    Article  Google Scholar 

  20. S.R. Kalidindi, C.A. Bronkhorst, L. Anand, Crystallographic texture evolution in bulk deformation processing of FCC metals. J. Mech. Phys. Solids 40(3), 537–569 (1992)

    Article  Google Scholar 

  21. D. Peirce, R.J. Asaro, A. Needleman, Material rate dependence and localized deformation in crystalline solids. Acta Metall. 31(12), 1951–1976 (1983)

    Article  Google Scholar 

  22. Y. Shen, P.M. Anderson, Transmission of a screw dislocation across a coherent, non-slipping interface. J. Mech. Phys. Solids 55(5), 956–979 (2007)

    Article  Google Scholar 

  23. C.E. Packard, O. Franke, E.R. Homer, C.A. Schuh, Nanoscale strength distribution in amorphous versus crystalline metals. J. Mater. Res. 25(12), 2251–2263 (2010)

    Article  Google Scholar 

  24. H. Askari, M.R. Maughan, N. Abdolrahim, D. Sagapuram, D.F. Bahr, H.M. Zbib, A stochastic crystal plasticity framework for deformation of micro-scale polycrystalline materials. Int. J. Plast. 68, 21–33 (2015)

    Article  Google Scholar 

  25. M.D. Uchic, D.M. Dimiduk, J.N. Florando, W.D. Nix, Sample dimensions influence strength and crystal plasticity. Science 305(5686), 986–989 (2004)

    Article  Google Scholar 

  26. J.R. Greer, J.T.M. De Hosson, Plasticity in small-sized metallic systems: intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56(6), 654–724 (2011)

    Article  Google Scholar 

  27. J.D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A Math. Phys. Sci. 241(1226), 376–396 (1957)

    Article  Google Scholar 

  28. T. Mura, Micromechanics of Defects in Solids (Martinus Nijhoff, The Hague, 1982)

    Book  Google Scholar 

  29. Hibbitt, Karlsson & Sorensen Inc., ABAQUS Reference Manuals (Hibbitt, Karlsson & Sorensen Inc., Pawtucket, RI, 2005)

    Google Scholar 

  30. J.R. Trelewicz, C.A. Schuh, The Hall–Petch breakdown in nanocrystalline metals: a crossover to glass-like deformation. Acta Mater. 55(17), 5948–5958 (2007)

    Article  Google Scholar 

  31. G. Saada, Hall–Petch revisited. Mater. Sci. Eng. A Struct. Mater. 400, 146–149 (2005)

    Article  Google Scholar 

  32. S. Brandstetter, H. Van Swygenhoven, S. Van Petegem, B. Schmitt, R. Maass, P.M. Derlet, From micro- to macroplasticity. Adv. Mater. 18(12), 1545–1548 (2006)

    Article  Google Scholar 

  33. Y.M. Wang, R.T. Ott, T. van Buuren, T.M. Willey, M.M. Biener, A.V. Hamza, Controlling factors in tensile deformation of nanocrystalline cobalt and nickel. Phys. Rev. B 85(1), 014101 (2012)

    Article  Google Scholar 

  34. L. Thilly, S.V. Petegem, P.-O. Renault, F. Lecouturier, V. Vidal, B. Schmitt, H.V. Swygenhoven, A new criterion for elasto-plastic transition in nanomaterials: application to size and composite effects on Cu–Nb nanocomposite wires. Acta Mater. 57(11), 3157–3169 (2009)

    Article  Google Scholar 

  35. F. Ebrahimi, G.R. Bourne, M.S. Kelly, T.E. Matthews, Mechanical properties of nanocrystalline nickel produced by electrodeposition. Nanostruct. Mater. 11(3), 343–350 (1999)

    Article  Google Scholar 

  36. J. Rajagopalan, J.H. Han, M.T.A. Saif, Bauschinger effect in unpassivated freestanding nanoscale metal films. Scr. Mater. 59(7), 734–737 (2008)

    Article  Google Scholar 

  37. J. Rajagopalan, J.H. Han, M.T.A. Saif, Plastic deformation recovery in freestanding nanocrystalline aluminum and gold thin films. Science 315(5820), 1831–1834 (2007)

    Article  Google Scholar 

  38. Y.J. Wei, A.F. Bower, H.J. Gao, Recoverable creep deformation and transient local stress concentration due to heterogeneous grain-boundary diffusion and sliding in polycrystalline solids. J. Mech. Phys. Solids 56(4), 1460–1483 (2008)

    Article  Google Scholar 

  39. X.Y. Li, Y.J. Wei, W. Yang, H.J. Gao, Competing grain-boundary- and dislocation-mediated mechanisms in plastic strain recovery in nanocrystalline aluminum. Proc. Natl. Acad. Sci. U. S. A. 106(38), 16108–16113 (2009)

    Article  Google Scholar 

  40. S. Cheng, A.D. Stoica, X.L. Wang, Y. Ren, J. Almer, J.A. Horton, C.T. Liu, B. Clausen, D.W. Brown, P.K. Liaw, L. Zuo, Deformation crossover: from nano- to mesoscale. Phys. Rev. Lett. 103(3), 4 (2009)

    Article  Google Scholar 

  41. Y.M. Wang, R.T. Ott, A.V. Hamza, M.F. Besser, J. Almer, M.J. Kramer, Achieving large uniform tensile ductility in nanocrystalline metals. Phys. Rev. Lett. 105(21), 215502 (2010)

    Article  Google Scholar 

  42. H.Q. Li, H. Choo, Y. Ren, T.A. Saleh, U. Lienert, P.K. Liaw, F. Ebrahimi, Strain-dependent deformation behavior in nanocrystalline metals. Phys. Rev. Lett. 101(1), 4 (2008)

    Google Scholar 

  43. S. Van Petegem, L. Li, P.M. Anderson, H. Van Swygenhoven, Deformation mechanisms in nanocrystalline metals: insights from in-situ diffraction and crystal plasticity modelling. Thin Solid Films 530, 20–24 (2013)

    Article  Google Scholar 

  44. B. Clausen, T. Lorentzen, T. Leffers, Self-consistent modelling of the plastic deformation of FCC polycrystals and its implications for diffraction measurements of internal stresses. Acta Mater. 46(9), 3087–3098 (1998)

    Article  Google Scholar 

  45. H. Van Swygenhoven, B. Schmitt, P.M. Derlet, S. Van Petegem, A. Cervellino, Z. Budrovic, S. Brandstetter, A. Bollhalder, M. Schild, Following peak profiles during elastic and plastic deformation: a synchrotron-based technique. Rev. Sci. Instrum. 77(1), 10 (2006)

    Google Scholar 

  46. Z. Budrovic, S. Van Petegem, P.M. Derlet, B. Schmitt, H. Van Swygenhoven, E. Schafler, M. Zehetbauer, Footprints of deformation mechanisms during in situ x-ray diffraction: nanocrystalline and ultrafine grained Ni. Appl. Phys. Lett. 86(23), 3 (2005)

    Article  Google Scholar 

  47. Z. Budrovic, H. Van Swygenhoven, P.M. Derlet, S. Van Petegem, B. Schmitt, Plastic deformation with reversible peak broadening in nanocrystalline nickel. Science 304(5668), 273–276 (2004)

    Article  Google Scholar 

  48. F.F. Csikor, C. Motz, D. Weygand, M. Zaiser, S. Zapperi, Dislocation avalanches, strain bursts, and the problem of plastic forming at the micrometer scale. Science 318(5848), 251–254 (2007)

    Article  Google Scholar 

  49. V.V. Bulatov, W. Cai, Computer Simulations of Dislocations (Oxford University Press, Oxford, 2006)

    Google Scholar 

  50. C. Brandl, P.M. Derlet, H.V. Swygenhoven, Dislocation mediated plasticity in nanocrystalline Al: the strongest size. Model. Simul. Mater. Sci. Eng. 19(7), 074005 (2011)

    Article  Google Scholar 

  51. T.J. Rupert, D.S. Gianola, Y. Gan, K.J. Hemker, Experimental observations of stress-driven grain boundary migration. Science 326(5960), 1686–1690 (2009)

    Article  Google Scholar 

  52. Y.M. Wang, E. Ma, Three strategies to achieve uniform tensile deformation in a nanostructured metal. Acta Mater. 52(6), 1699–1709 (2004)

    Article  Google Scholar 

  53. Y. Wang, J. Li, A.V. Hamza, T.W. Barbee, Ductile crystalline–amorphous nanolaminates. Proc. Natl. Acad. Sci. 104(27), 11155–11160 (2007)

    Article  Google Scholar 

  54. Y.J. Wei, L. Anand, Grain-boundary sliding and separation in polycrystalline metals: application to nanocrystalline fcc metals. J. Mech. Phys. Solids 52(11), 2587–2616 (2004)

    Article  Google Scholar 

  55. H.B. Huntington, The elastic constants of crystals. Solid State Phys. Adv. Res. Appl. 7, 213–351 (1958)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, L., Anderson, P.M. (2016). Quantized Crystal Plasticity Modeling of Nanocrystalline Metals. In: Weinberger, C., Tucker, G. (eds) Multiscale Materials Modeling for Nanomechanics. Springer Series in Materials Science, vol 245. Springer, Cham. https://doi.org/10.1007/978-3-319-33480-6_13

Download citation

Publish with us

Policies and ethics