Skip to main content

Max-Cut Under Graph Constraints

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9682))

Abstract

An instance of the graph-constrained max-cut (\(\mathsf {GCMC}\)) problem consists of (i) an undirected graph \(G=(V,E)\) and (ii) edge-weights \(c:{V\atopwithdelims ()2} \rightarrow \mathbb {R}_+\) on a complete undirected graph. The objective is to find a subset \(S \subseteq V\) of vertices satisfying some graph-based constraint in G that maximizes the weight \(\sum _{u\in S, v\not \in S} c_{uv}\) of edges in the cut \((S,V{\setminus } S)\). The types of graph constraints we can handle include independent set, vertex cover, dominating set and connectivity.

Our main results are for the case when G is a graph with bounded treewidth, where we obtain a \(\frac{1}{2}\)-approximation algorithm. Our algorithm uses an LP relaxation based on the Sherali-Adams hierarchy. It can handle any graph constraint for which there is a (certain type of) dynamic program that exactly optimizes linear objectives.

Using known decomposition results, these imply essentially the same approximation ratio for \(\mathsf {GCMC}\) under constraints such as independent set, dominating set and connectivity on a planar graph G (more generally for bounded-genus or excluded-minor graphs).

Research of J. Lee was partially supported by NSF grant CMMI–1160915 and ONR grant N00014-14-1-0315.

Research of V. Nagarajan supported in part by a faculty award from Bloomberg Labs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For other polynomial-time dynamic programs, the LP has quasi-polynomial size.

References

  1. Ageev, A.A., Hassin, R., Sviridenko, M.: A 0.5-approximation algorithm for MAX DICUT with given sizes of parts. SIAM J. Discrete Math. 14(2), 246–255 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ageev, A.A., Sviridenko, M.I.: Approximation algorithms for maximum coverage and max cut with given sizes of parts. In: Cornuéjols, G., Burkard, R.E., Woeginger, G.J. (eds.) IPCO 1999. LNCS, vol. 1610, pp. 17–30. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  3. Bansal, N., Lee, K.W., Nagarajan, V., Zafer, M.: Minimum congestion mapping in a cloud. SIAM J. Comput. 44(3), 819–843 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bateni, M., Charikar, M., Guruswami, V.: Maxmin allocation via degree lower-bounded arborescences. In: STOC, pp. 543–552 (2009)

    Google Scholar 

  5. Bienstock, D., Özbay, N.: Tree-width and the Sherali-Adams operator. Discrete Optim. 1(1), 13–21 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bodlaender, H.L.: NC-algorithms for graphs with small treewidth. In: van Leeuwen, J. (ed.) WG 1988. LNCS, vol. 344, pp. 1–10. Springer, Heidelberg (1989)

    Chapter  Google Scholar 

  7. Călinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM J. Comput. 40(6), 1740–1766 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chekuri, C., Vondrák, J., Zenklusen, R.: Submodular function maximization via the multilinear relaxation and contention resolution schemes. SIAM J. Comput. 43(6), 1831–1879 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Demaine, E.D., Hajiaghayi, M.T., Kawarabayashi, K.: Algorithmic graph minor theory: decomposition, approximation, and coloring. In: FOCS, pp. 637–646 (2005)

    Google Scholar 

  10. Demaine, E.D., Hajiaghayi, M., Kawarabayashi, K.: Contraction decomposition in h-minor-free graphs and algorithmic applications. In: STOC, pp. 441–450 (2011)

    Google Scholar 

  11. Feldman, M., Naor, J., Schwartz, R.: A unified continuous greedy algorithm for submodular maximization. In: FOCS, pp. 570–579 (2011)

    Google Scholar 

  12. Friggstad, Z., Könemann, J., Kun-Ko, Y., Louis, A., Shadravan, M., Tulsiani, M.: Linear programming hierarchies suffice for directed Steiner tree. In: Lee, J., Vygen, J. (eds.) IPCO 2014. LNCS, vol. 8494, pp. 285–296. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  13. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. Assoc. Comput. Mach. 42(6), 1115–1145 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gupta, A., Talwar, K., Witmer, D.: Sparsest cut on bounded treewidth graphs: algorithms and hardness results. In: STOC, pp. 281–290 (2013)

    Google Scholar 

  15. Hajiaghayi, M.T., Kortsarz, G., MacDavid, R., Purohit, M., Sarpatwar, K.: Approximation algorithms for connected maximum cut and related problems. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 693–704. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  16. Khot, S., Kindler, G., Mossel, E., O’Donnell, R.: Optimal inapproximability results for MAX-CUT and other 2-variable csps? SIAM J. Comput. 37(1), 319–357 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lee, J., Mirrokni, V.S., Nagarajan, V., Sviridenko, M.: Maximizing nonmonotone submodular functions under matroid or knapsack constraints. SIAM J. Discrete Math. 23(4), 2053–2078 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lee, J., Sviridenko, M., Vondrák, J.: Submodular maximization over multiple matroids via generalized exchange properties. Math. Oper. Res. 35(4), 795–806 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Magen, A., Moharrami, M.: Robust algorithms for Max Independent Set on minor-free graphs based on the Sherali-Adams hierarchy. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) Approximation, Randomization, and Combinatorial Optimization. LNCS, vol. 5687, pp. 258–271. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  20. Sherali, H.D., Adams, W.P.: A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM J. Discrete Math. 3(3), 411–430 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  21. Vicente, S., Kolmogorov, V., Rother, C.: Graph cut based image segmentation with connectivity priors. In: CVPR (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangkun Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Lee, J., Nagarajan, V., Shen, X. (2016). Max-Cut Under Graph Constraints. In: Louveaux, Q., Skutella, M. (eds) Integer Programming and Combinatorial Optimization. IPCO 2016. Lecture Notes in Computer Science(), vol 9682. Springer, Cham. https://doi.org/10.1007/978-3-319-33461-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33461-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33460-8

  • Online ISBN: 978-3-319-33461-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics