Skip to main content

Sum-of-Squares Hierarchy Lower Bounds for Symmetric Formulations

  • Conference paper
  • First Online:
Book cover Integer Programming and Combinatorial Optimization (IPCO 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9682))

Abstract

We introduce a method for proving Sum-of-Squares (SoS)/ Lasserre hierarchy lower bounds when the initial problem formulation exhibits a high degree of symmetry. Our main technical theorem allows us to reduce the study of the positive semidefiniteness to the analysis of “well-behaved” univariate polynomial inequalities.

We illustrate the technique on two problems, one unconstrained and the other with constraints. More precisely, we give a short elementary proof of Grigoriev/Laurent lower bound for finding the integer cut polytope of the complete graph. We also show that the SoS hierarchy requires a non-constant number of rounds to improve the initial integrality gap of 2 for the Min-Knapsack linear program strengthened with cover inequalities.

Supported by the Swiss National Science Foundation project 200020-144491/1 “Approximation Algorithms for Machine Scheduling Through Theory and Experiments” and by Sciex Project 12.311.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The two problems, Knapsack and Max-Cut in complete graphs, considered respectively in [14, 16] and in [23], are essentially the same and we will use Max-Cut to refer to both.

  2. 2.

    In order to keep the notation simple, we do not emphasize the parameter q as the dimension of the vectors should be clear from the context.

  3. 3.

    We define the set-valued permutation by \(\pi (I) = \left\{ \pi (i)~|~i \in I \right\} \).

  4. 4.

    It can be shown that the roots \(r_i\) can be assumed to be real numbers.

  5. 5.

    Recall that at level n the integrality gap vanishes.

  6. 6.

    The full version of the paper is available at http://arxiv.org/abs/1407.1746.

  7. 7.

    Denote by \({x}^{\underline{m}} = x(x-1)\cdots (x-m+1)\) the falling factorial (with the convention that \({x}^{\underline{0}} = 1\)).

References

  1. Bansal, N., Buchbinder, N., Naor, J.: Randomized competitive algorithms for generalized caching. In: STOC, pp. 235–244 (2008)

    Google Scholar 

  2. Bansal, N., Gupta, A., Krishnaswamy, R.: A constant factor approximation algorithm for generalized min-sum set cover. In: SODA, pp. 1539–1545 (2010)

    Google Scholar 

  3. Bansal, N., Pruhs, K.: The geometry of scheduling. In: FOCS, pp. 407–414 (2010)

    Google Scholar 

  4. Barak, B., Chan, S.O., Kothari, P.: Sum of squares lower bounds from pairwise independence. In: STOC (2015)

    Google Scholar 

  5. Barak, B., Steurer, D.: Sum-of-squares proofs, the quest toward optimal algorithms. In: Electronic Colloquium on Computational Complexity (ECCC), vol. 21, p. 59 (2014)

    Google Scholar 

  6. Bhaskara, A., Charikar, M., Vijayaraghavan, A., Guruswami, V., Zhou, Y.: Polynomial integrality gaps for strong SDP relaxations of densest k-subgraph. In: SODA, pp. 388–405 (2012)

    Google Scholar 

  7. Blekherman, G., Gouveia, J., Pfeiffer, J.: Sums of squares on the hypercube. In: CoRR, abs/1402.4199 (2014)

    Google Scholar 

  8. Carnes, T., Shmoys, D.B.: Primal-Dual schema for capacitated covering problems. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp. 288–302. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Carr, R.D., Fleischer, L., Leung, V.J., Phillips, C.A.: Strengthening integrality gaps for capacitated network design and covering problems. In: SODA, pp. 106–115 (2000)

    Google Scholar 

  10. Chakrabarty, D., Grant, E., Könemann, J.: On column-restricted and priority covering integer programs. In: Eisenbrand, F., Shepherd, F.B. (eds.) IPCO 2010. LNCS, vol. 6080, pp. 355–368. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Chlamtac, E., Tulsiani, M.: Convex relaxations and integrality gaps. In: Anjos, M.F., Lasserre, J.B. (eds.) Handbook on Semidefinite, Conic and Polynomial Optimization. International Series in Operations Research & Management Science, vol. 166, pp. 139–169. Springer, US (2011)

    Chapter  Google Scholar 

  12. Godsil, C.: Association schemes (2010). Lecture Notes available at http://quoll.uwaterloo.ca/mine/Notes/assoc2.pdf

  13. Goemans, M.X., Tunçel, L.: When does the positive semidefiniteness constraint help in lifting procedures? Math. Oper. Res. 26(4), 796–815 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Grigoriev, D.: Complexity of positivstellensatz proofs for the knapsack. Comput. Complex. 10(2), 139–154 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Grigoriev, D.: Linear lower bound on degrees of positivstellensatz calculus proofs for the parity. Theor. Comput. Sci. 259(1–2), 613–622 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grigoriev, D., Hirsch, E.A., Pasechnik, D.V.: Complexity of semi-algebraic proofs. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, p. 419. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  17. Hong, S., Tunçel, L.: Unification of lower-bound analyses of the lift-and-project rank of combinatorial optimization polyhedra. Discrete Appl. Math. 156(1), 25–41 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Khot, S.: On the power of unique 2-prover 1-round games. In: STOC, pp. 767–775 (2002)

    Google Scholar 

  19. Kurpisz, A., Leppänen, S., Mastrolilli, M.: A Lasserre lower bound for the min-sum single machine scheduling problem. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 853–864. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48350-3_71

    Chapter  Google Scholar 

  20. Kurpisz, A., Leppänen, S., Mastrolilli, M.: On the hardest problem formulations for the 0/1 Lasserre hierarchy. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 872–885. Springer, Heidelberg (2015)

    Google Scholar 

  21. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Laurent, M.: A comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre relaxations for 0–1 programming. Math. Oper. Res. 28(3), 470–496 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Laurent, M.: Lower bound for the number of iterations in semidefinite hierarchies for the cut polytope. Math. Oper. Res. 28(4), 871–883 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lee, J.R., Raghavendra, P., Steurer, D.: Lower bounds on the size of semidefinite programming relaxations. In: STOC, pp. 567–576 (2015)

    Google Scholar 

  25. Meka, R., Potechin, A., Wigderson, A.: Sum-of-squares lower bounds for planted clique. In: STOC, pp. 87–96 (2015)

    Google Scholar 

  26. O’Donnell, R.: Approximability proof complex. Talk at ELC Tokyo (2013). Slides available at http://www.cs.cmu.edu/~odonnell/slides/approx-proof-cxty.pps

  27. Parrilo, P.: Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization. Ph.D. thesis. California Institute of Technology (2000)

    Google Scholar 

  28. Raghavendra, P.: Optimal algorithms and inapproximability results for every CSP? In: STOC, pp. 245–254 (2008)

    Google Scholar 

  29. Schoenebeck, G.: Linear level Lasserre lower bounds for certain k-CSPs. In: FOCS, pp. 593–602 (2008)

    Google Scholar 

  30. Stephen, T., Tunçel, L.: On a representation of the matching polytope via semidefinite liftings. Math. Oper. Res. 24(1), 1–7 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tulsiani, M., CSP gaps and reductions in the Lasserre hierarchy. In: STOC, pp. 303–312 (2009)

    Google Scholar 

  32. Wolsey, L.A.: Facets for a linear inequality in 0–1 variables. Math. Program. 8, 168–175 (1975)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Ola Svensson for helpful discussions and ideas regarding this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuli Leppänen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Kurpisz, A., Leppänen, S., Mastrolilli, M. (2016). Sum-of-Squares Hierarchy Lower Bounds for Symmetric Formulations. In: Louveaux, Q., Skutella, M. (eds) Integer Programming and Combinatorial Optimization. IPCO 2016. Lecture Notes in Computer Science(), vol 9682. Springer, Cham. https://doi.org/10.1007/978-3-319-33461-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33461-5_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33460-8

  • Online ISBN: 978-3-319-33461-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics