Skip to main content

Satellite Remote Sensing in Support of Fisheries Management in Global Oceans

  • Chapter
  • First Online:
Book cover Earth Science Satellite Applications

Part of the book series: Springer Remote Sensing/Photogrammetry ((SPRINGERREMO))

Abstract

The world’s oceans are dynamic: environmental conditions and ecosystems in marine environments fluctuate spatially and temporally on multiple scales. Spatially, the ocean varies with water depth, ocean currents, and oceanic fronts. This abiotic and biotic variability makes managing resources in the dynamic ocean environment extremely difficult, and as a result, fisheries management often serves as one of the textbook examples of an unstructured or ‘wicked’ environmental problem. This chapter provides an overview of the role satellite remote sensing can play in ocean and fisheries management. Currently, there are very few applications available that enable managers to use satellite earth observations in a scientifically robust but straightforward manner. The chapter recommends collaboration between researchers, scientists, data analysts and conservation practitioners to develop accessible tools, all the while ensuring such approaches are scientifically robust and defensible and are directly meeting the needs of the management community. Continued support and resources for satellite earth observations, distribution, integration, and management-relevant science are needed to maximize the return on this investment in support of sustainable fisheries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bakun, A. (1996). Patterns in the ocean: Ocean processes and marine population dynamics (p. 323). University of California Sea Grant, San Diego, California, USA, in cooperation with Centro de Investigaciones Biologicas de Noroeste, La Paz, Baja California Sur, Mexico.

    Google Scholar 

  • Balint, P. J., Stewart, R. E., Desai, A., & Walters, L. C. (2011). Wicked environmental problems: Managing uncertainty and conflict. Washington, DC: Island Press.

    Book  Google Scholar 

  • Boehlert, G. W., & Schumacher, J. D. (1997). Changing oceans and changing fisheries: Environmental data for fisheries research and management. NOAA Technical Memorandum NMFS. NOAA-TM-NMFS-SWFSC-23.

    Google Scholar 

  • Bograd, S. J., Block, B. A., Costa, D. P., & Godley, B. J. (2010). Biologging technologies: New tools for conservation. Introduction Endangered Species Research, 10, 1–7. doi:10.3354/esr00269.

    Article  Google Scholar 

  • Breaker, L. C. (1981). The applications of satellite remote sensing to West Coast fisheries. Marine Technology Society Journal, 15, 32–40.

    Google Scholar 

  • Briscoe, D., Hiatt, S., Lewison, R., & Hines, E. (2014). Modeling habitat and bycatch risk for dugongs in Sabah. Malaysia. Endanger Species Research, 24, 237–247. doi:10.3354/esr00600.

    Article  Google Scholar 

  • Brown, C. J., White, C., Beger, M., Grantham H. S., Halpern, B. S., Klein, C. J., et al. (2015). Fisheries and biodiversity benefits of using static versus dynamic models for designing marine reserve networks. Ecosphere, 6 (10). Article Number: 182.

    Google Scholar 

  • Chan, K. M. A., Guerry, A. D., Balvanera, P., Klain, S., Satterfield, T., Basurto, X., et al. (2012). Where are cultural and social in ecosystem services? A framework for constructive engagement. BioScience, 62, 744–756. doi:10.1525/bio.2012.62.8.7.

    Article  Google Scholar 

  • Chassot, E., Bonhommeau, S., Reygondeau, G., Nieto, K., Polovina, J. J., Huret, M., et al. (2011). Satellite remote sensing for an ecosystem approach to fisheries management. ICES Journal of Marine Science, 68(4), 651–666. doi:10.1093/icesjms/fsq195/.

    Article  Google Scholar 

  • Checkley, D. M., Dotson, R. C., & Griffith, D. A. (2000). Continuous, underway sampling of eggs of Pacific sardine (Sardinops sagax) and northern anchovy (Engraulis mordax) in spring 1996 and 1997 off southern and central California. Deep-Sea Research Part II-Topical Studies In Oceanography, 47(5–6), 1139–1155.

    Google Scholar 

  • Collie, J. S., Adamowicz, W. L., Beck, M. W., et al. (2013). Marine spatial planning in practice by: Estuarine Coastal And Shelf. Science, 117, 1–11.

    Google Scholar 

  • Cornillon, P., et al. (1986). Sea surface temperature charts for the southern New England fishing community. The Marine Technology Society Journal, 20(2), 57–65.

    Google Scholar 

  • Costa, D. P., Breed, G. A., & Robinson, P. W. (2012). New insights into Pelagic migrations: Implications for ecology and conservation. D.J. Futuyma (Eds.). Annual Review of Ecology Evolution and Systematics, 43, 73–96.

    Article  Google Scholar 

  • Cushing, D. H. (1982). Detection of fish (p. 200). London: Pergamon Press.

    Google Scholar 

  • Davies, R. W. D., Cripps, S. J., Nickson, A., & Porter, G. (2009). Defining and estimating global marine fisheries bycatch. Marine Policy, 33, 661–672. doi:10.1016/j.marpol.2009.01.003.

    Article  Google Scholar 

  • Dunn, D. C., Maxwell, S. M., Boustany, A. M., & Halpin, P. N. (2016). Dynamic ocean management increases the efficiency and efficacy of fisheries management. Proceedings of the National Academy of Sciences, 113(3), 668–673. doi:10.1073/pnas.1513626113.

    Google Scholar 

  • EOS. (2006). Using satellite data products to manage living marine resources. Eos, 87(41), 437–438.

    Google Scholar 

  • FAO. (2003). The application of remote sensing technology to marine fisheries: An introductory manual (Section 7). Food and Agriculture Organization Corporate Document Repository.

    Google Scholar 

  • FAO. (2009). The state of world fisheries and aquaculture 2008. Rome, Italy: FAO Documentation Group. 176 p.

    Google Scholar 

  • Francis, M. P., Holdsworth, J. C., & Block, B. A. (2015). Life in the open ocean: Seasonal migration and diel diving behaviour of Southern Hemisphere porbeagle sharks (Lamna nasus). Marine Biology, 162, 2305–2323. doi:10.1007/s00227-015-2756-z.

    Article  Google Scholar 

  • Gardner, B., Sullivan, P. J., Morreale, S. J., et al. (2008). Spatial and temporal statistical analysis of bycatch data: Patterns of sea turtle bycatch in the North Atlantic. Canadian Journal of Fisheries and Aquatic Sciences, 65(11), 2461–2470.

    Article  Google Scholar 

  • Hall, M. A., Alverson, D. L., & Metuzals, K. I. (2000). By-catch: Problems and solutions. Marine Pollution Bulletin, 41, 204–219. doi:10.1016/S0025-326X(00)00111-9.

    Article  Google Scholar 

  • Hall, M., Nakano, H., Clarke, S., Thomas, S., Molloy, J., Peckham, S., et al. (2007). Working with fishers to reduce bycatches. In S. Kennelly (Ed.), Bycatch reduction in the world’s fisheries (pp. 235–288). Dordrecht: Springer.

    Google Scholar 

  • Hammerschlag, N., Gallagher, A. J., Lazarre, D. M., et al. (2011). Range extension of the Endangered great hammerhead shark Sphyrna mokarran in the Northwest Atlantic: Preliminary data and significance for conservation. Endangered Species Research, 12(2), 111–116.

    Article  Google Scholar 

  • Haury, L. R., McGowan, J. A., & Wiebe, P. H. (1978). Patterns and processes in the time-space scales of plankton distributions. In J.H. Steele (Ed.), Spatial patterns in plankton communities (pp. 277–327). Plenum Press.

    Google Scholar 

  • Hazen, E. L., Maxwell, S. M., Bailey, H., Bograd, S. J., Hamann, M., Gaspar, P., et al. (2012). Ontogeny in marine tagging and tracking science: Technologies and data gaps. Marine Ecology Progress Series, 457, 221–240.

    Article  Google Scholar 

  • Hazen, E. L., Jorgensen, S., Rykaczewski, R. R., Bograd, S. J., Foley, D. G., Jonsen, I. D., et al. (2013). Predicted habitat shifts of Pacific top predators in a changing climate. Nature Climate Change, 3, 234–238.

    Article  Google Scholar 

  • Hisschemoller, M., & Hoppe, R. (1995). Coping with intractable controversies: The case for problem structuring in policy design and analysis. Knowledge, Technology and Policy, 8(4), 40–60. doi:10.1007/bf02832229.

    Article  Google Scholar 

  • Hobday, A. J., Hartog, J. R., Timmis, T., & Fielding, J. (2010). Dynamic spatial zoning to manage southern bluefin tuna capture in a multi-species longline fishery. Fisheries Oceanography, 19, 243–253. doi:10.1111/j.1365-2419.2010.00540.x.

    Article  Google Scholar 

  • Hobday, A. J., Smith, A. D. M., Stobutzki, I. C., Bulman, C., Daley, R., Dambacher, J. M., et al. (2011). Ecological risk assessment for the effects of fishing. Fisheries Research, 108, 372–384. doi:10.1016/j.fishres.2011.01.013.

    Article  Google Scholar 

  • Hobday, A. J., Maxwell, S. M., Forgie, J., Mcdonald, J., Darby, M., Seto, K., et al. (2014). Dynamic ocean management: Integrating scientific and technological capacity with law, policy and management. Stanford Environmental Law Journal, 33, 125–165. https://journals.law.stanford.edu/sites/default/files/stanford-environmental-law-journal-selj/print/2014/03/i_hobday_final.pdf.

  • Howell, E. A., Hoover, A., Benson, S. R., Bailey, H., Polovina, J. J., Seminoff, J. A., et al. (2015). Enhancing the TurtleWatch product for leatherback sea turtles, a dynamic habitat model for ecosystem-based management. Fisheries Oceanography, 24, 57–68. doi:10.1111/fog.12092.

    Article  Google Scholar 

  • Howell, E., Kobayashi, D., Parker, D., Balazs, G., & Polovina, J. (2008). TurtleWatch: A tool to aid in the by-catch reduction of loggerhead turtles Caretta caretta in the Hawaii-based pelagic longline fishery. Endanger Species Research, 5, 267–278. doi:10.3354/esr00096.

    Article  Google Scholar 

  • James, M., Ottensmeyer, C., & Myers, R. (2005). Identification of high-use habitat and threats to leatherback sea turtles in northern waters: New directions for conservation. Ecology Letters, 8, 195–201. doi:10.1111/j.1461-0248.2004.00710.x.

    Article  Google Scholar 

  • Kachelriess, D., Wegmann, M., Gollock, M., et al. (2014). The application of remote sensing for marine protected area management. Ecological Indicators, 36, 169–177.

    Article  Google Scholar 

  • Kahru, M., Hakansson, B., & Rud, O. (1995). Distributions of the sea-surface temperature fronts in the baltic sea as derived from satellite imagery. Continental Shelf Research, 15(6), 663–679. Published: MAY 1995.

    Google Scholar 

  • Kelleher, K. (2005). Discards in the World’s Marine Fisheries: An Update. Technical Paper. No. 470. Rome: FAO Fisheries. p. 131.

    Google Scholar 

  • Klemas, V. (2012a). Remote sensing of coastal plumes and ocean fronts: Overview and case study. Journal Of Coastal Research 28(1A_S), 1–7.

    Google Scholar 

  • Klemas, V. (2012b). Remote sensing of environmental indicators of potential fish aggregation: An overview. Baltica, 25(2), 99–112.

    Article  Google Scholar 

  • Klemas, V. (2013). Fisheries applications of remote sensing: An overview. Fisheries Research, 148, 124–136.

    Article  Google Scholar 

  • Larnicol, G., Guinehut, S., Rio, M.-H., Drevillon, M., Faugere, Y., & Nicolas, G. (2006). The global observed ocean products of the French mercator project. In Proceedings of 15 Years of progress in radar altimetry Symposium, ESA Special Publication, pp. 614.

    Google Scholar 

  • Lengyel, S., Déri, E., Varga, Z., Horváth, R., Tóthmérész, B., Henry, P.-Y., et al. (2008). Habitat monitoring in Europe: A description of current practices. Biodiversity and Conservation, 17, 3327–3339. doi:10.1007/s10531-008-9395-3.

    Article  Google Scholar 

  • Lewison, R., Crowder, L., Read, A., & Freeman, S. (2004). Understanding impacts of fisheries bycatch on marine megafauna. Trends in Ecology and Evolution, 19, 598–604. doi:10.1016/j.tree.2004.09.004.

    Article  Google Scholar 

  • Lewison, R. L., Soykan, C. U., & Franklin, J. (2009). Mapping the bycatch seascape: Multispecies and multi-scale spatial patterns of fisheries bycatch. Ecological Applications, 19, 920–930. doi:10.1890/08-0623.1.

    Article  Google Scholar 

  • Lewison, R., Hobday, A., Maxwell, S., Hazen, E., Hartog, J., Dunn, D., et al. (2015). Dynamic ocean management: Identifying the critical ingredients of dynamic approaches to ocean resource management. BioScience, 65, 486–498. doi:10.1093/biosci/biv018.

    Article  Google Scholar 

  • Luo, J., Ault, J. S., Shay, L. K., Hoolihan, J. P., Prince, E. D., Brown, C. A., et al. (2015). Ocean heat content reveals secrets of fish migrations. PLoS ONE, 10(10): e0141101. doi:10.1371/journal.pone.0141101.

    Google Scholar 

  • Lynn, R. J. (2003). Variability in the spawning habitat of Pacific sardine (Sardinops sagax) off southern and central California. Fisheries Oceanography, 12(6), 541–553.

    Article  Google Scholar 

  • Maxwell, S. M., Hazen, E. L., Lewison, R. L., Dunn, D. C., Bailey, H., Bograd, S. J., et al. (2015). Dynamic ocean management: Defining and conceptualizing real-time management of the ocean. Mar. Policy, 58, 42–50. doi:10.1016/j.marpol.2015.03.014.

    Article  Google Scholar 

  • Pettorelli, N., Nagendra, H., Willians, R., Rocchini, D., & Fleishman, E. (2014). A new platform to support research at the interface of remote sensing, ecology and conservation. Remote Sensing in Ecology and Conservation, 1, 1–3. doi:10.1002/rse2.1.

    Article  Google Scholar 

  • Polovina, J., Uchida, I., Balazs, G., Howell, E., Parker, D., & Dutton, P. (2006). The Kuroshio extension bifurcation region: A pelagic hotspot for juvenile loggerhead sea turtles. Deep Sea Research II, 53, 326–339. doi:10.1016/j.dsr2.2006.01.006.

    Article  Google Scholar 

  • Radovich, J. (1982). The collapse of the California sardine fishery. What have we learned, pp. 56–77.

    Google Scholar 

  • Ramos, A. G., Santiago, J., Sangra, P., & Canton, P. (1996). An application of satellite-derived sea surface temperature data to the skipjack and albacore tuna fisheries in the north-east Atlantic. International Journal of Remote Sensing, 17, 749–759. doi:10.1080/01431169608949042.

    Article  Google Scholar 

  • Rose, G. A., deYoung, B., Kulka, D. W., Goddard, S. V., & Fletcher, G. L. (2000). Distribution shifts and overfishing the northern cod (Gadus morhua): A view from the ocean. Canadian Journal of Fisheries and Aquatic Sciences, 57, 644–663. doi:10.1139/f00-004.

    Article  Google Scholar 

  • Royer, F., Fromentin, J.-M., & Gaspar, P. (2004). Association between bluefin tuna schools and oceanic features in the western Mediterranean. Marine Ecology Progress Series, 269, 249–263.

    Article  Google Scholar 

  • Santos, A. M. P. (2000). Fisheries oceanography using satellite and airborne remote sensing methods: A review. Fisheries Research, 49(1), 1–20.

    Article  Google Scholar 

  • Santos, A. M. P, & Fiúza, A. F. G. (1992). Supporting the Portuguese fisheries with satellites. In ESA ISY-1 (ESA SP-341), pp. 663–668.

    Google Scholar 

  • Scheuerell, M. D., & Williams, J. G. (2005). Forecasting climate-induced changes in the survival of Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha). Fisheries Oceanography, 14(6), 448–457.

    Article  Google Scholar 

  • Schultz, L., Folke, C., Österblom, H., & Olsson, P. (2015). Adaptive governance, ecosystem management, and natural capital. Proceedings of the National Academy of Sciences, 112(24), 7369–7374.

    Google Scholar 

  • Sims, M., Cox, T., & Lewison, R. (2008). Modeling spatial patterns in fisheries bycatch: Improving bycatch maps to aid fisheries management. Ecological Applications, 18, 649–661. doi:10.1890/07-0685.1.

    Article  Google Scholar 

  • Smith, P. E., & Moser, H. G. (2003). Long-term trends and variability in the larvae of Pacific sardine and associated fish species of the California Current region. Deep Sea Research Part II: Topical Studies in Oceanography, 50(14), 2519–2536.

    Article  Google Scholar 

  • Soykan, C. U., & Lewison, R. L. (2015). Using community-level metrics to monitor the effects of marine protected areas on biodiversity. Conservation Biology. doi:10.1111/cobi.12445.

    Google Scholar 

  • Sudre, J., & Morrow, R. (2008). Global surface currents: A new product for investigating ocean dynamics. Ocean Dynamics, 58(2):101–118.

    Google Scholar 

  • Weber, E. D., & McClatchie, S. (2010). Predictive models of northern anchovy Engraulis mordax and Pacific sardine Sardinops sagax spawning habitat in the California Current. Marine Ecology Progress Series, 406, 251–263.

    Article  Google Scholar 

  • Wright, D. J., Woodworth, B. M., & O’Brien, J. J. (1976). A system for monitoring the location of harvestable coho salmon stocks. Marine Fisheries Review, 38, 1–7.

    Google Scholar 

  • Wells, B. K., Field, J. C., Thayer, J. A., Grimes, C. B., Bograd, S. J., Sydeman, W. J., et al. (2008). Untangling the relationships among climate, prey and top predators in an ocean ecosystem. Marine Ecology Progress Series, 364, 15–29.

    Article  Google Scholar 

  • Yamanaka, I. (1988). The fisheries forecasting system in Japan for coastal pelagic fish, (No. 301). Food and Agriculture Organisation.

    Google Scholar 

  • Zwolinski, J. P., Emmett, R. L., & Demer, D. A. (2011). Predicting habitat to optimize sampling of Pacific sardine (Sardinops sagax). ICES Journal of Marine Science: Journal du Conseil, 68(5), 867–879.

    Article  Google Scholar 

  • Zydelis, R., Lewison, R. L., Shaffer, S., Moore, J., Boustany, A., Roberts, J., et al. (2011). Dynamic habitat models: Using telemetry data to project fisheries bycatch. Proceedings of the Royal Society B: Biological Sciences, 282, 1–10. doi:10.1098/rspb.2011.0330.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca L. Lewison .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kacev, D., Lewison, R.L. (2016). Satellite Remote Sensing in Support of Fisheries Management in Global Oceans. In: Hossain, F. (eds) Earth Science Satellite Applications. Springer Remote Sensing/Photogrammetry. Springer, Cham. https://doi.org/10.1007/978-3-319-33438-7_8

Download citation

Publish with us

Policies and ethics