Skip to main content

Applying Earth Observations to Water Resources Challenges

  • Chapter
  • First Online:
Earth Science Satellite Applications

Abstract

Since 2007, significant strides have been made to build the applied research and Earth observations (EO) capacity building community and develop pathways for NASA and Earth observations to help address challenges in water resources. Water is both a critical research topic (e.g. understanding the global water cycle) as well as a critical resource for civilization. As a result, there is a consensus that information about water availability could be valuable for improved management and for water security. The biggest challenge in developing useful applications is finding a way to translate research products, intended to address research questions, to applications that can yield a societal benefit. This chapter addresses the current challenges and future prospects of earth observing systems in the field of water resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adegoke, J. O., & Carleton, A. M. (2002). Relations between soil moisture and satellite vegetation indices in the U.S. Corn Belt. Journal of Hydrometeorology, 3(4), 395–405. http://doi.org/10.1175/1525-7541(2002)003<0395:RBSMAS>2.0.CO;2.

  • Anderson, M. C., Allen, R. G., Morse, A., & Kustas, W. P. (2012). Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources. Remote Sensing of Environment, 122, 50–65. http://doi.org/10.1016/j.rse.2011.08.025.

    Google Scholar 

  • Anderson, W. B., Zaitchik, B. F., Hain, C. R., Anderson, M. C., Yilmaz, M. T., Mecikalski, J., & Schultz, L. (2012). Towards an integrated soil moisture drought monitor for East Africa. Hydrology and Earth System Sciences, 16(8), 2893–2913. http://doi.org/10.5194/hess-16-2893-2012.

    Google Scholar 

  • Barnett, T. P., Adam, J. C., & Lettenmaier, D. P. (2005). Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438(7066), 303–9. http://doi.org/10.1038/nature04141.

    Google Scholar 

  • Berhane, F., Zaitchik, B., & Dezfuli, A. (2014). Subseasonal analysis of precipitation variability in the Blue Nile River Basin. Journal of Climate, 27(1), 325–344. http://doi.org/10.1175/JCLI-D-13-00094.1.

    Google Scholar 

  • Bolten, J. D., & Crow, W. T. (2012). Improved prediction of quasi-global vegetation conditions using remotely-sensed surface soil moisture. Geophysical Research Letters, 39(19), n/a–n/a. http://doi.org/10.1029/2012GL053470.

    Google Scholar 

  • Bolten, J. D., Crow, W. T., Zhan, X., Jackson, T. J., & Reynolds, C. A. (2010). Evaluating the utility of remotely sensed soil moisture retrievals for operational agricultural drought monitoring. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 3(1), 57–66. http://doi.org/10.1109/JSTARS.2009.2037163.

    Google Scholar 

  • Bolten, J. D., Crow, W. T., Zhan, X., Reynolds, C. A., & Jackson, T. J. (2002). Assimilation of a satellite-based soilmoisture product into a two-layer water balance model for a global crop production decision support system. In S. K. Park & L. Xu (Eds.), Data assimilation for atmospheric, oceanic and hydrologic applications (pp. 449–463). Berlin, Heidelberg: Springer Berlin Heidelberg. http://doi.org/10.1007/978-3-540-71056-1.

    Google Scholar 

  • Chen, J., Famigliett, J. S., Scanlon, B. R., & Rodell, M. (2015). Groundwater storage changes: Present status from GRACE observations. Surveys in Geophysics. http://doi.org/10.1007/s10712-015-9332-4.

    Google Scholar 

  • Dai, A., Trenberth, K. E., & Qian, T. (2004). A global dataset of palmer drought severity index for 1870–2002: Relationship with soil moisture and effects of surface warming. Journal of Hydrometeorology, 5(6), 1117–1130. http://doi.org/10.1175/JHM-386.1.

    Google Scholar 

  • Engman, E. T., & Gurney, R. J. (1991). Remote sensing in hydrology. Chapman and Hall. Retrieved from http://www.springer.com/us/book/9789401066709.

  • Entekhabi, D., Njoku, E. G., O’Neill, P. E., Kellogg, K. H., Crow, W. T., Edelstein, W. N., Van Zyl, J. (2010). The Soil Moisture Active Passive (SMAP) Mission. Proceedings of the IEEE, 98(5), 704–716. http://doi.org/10.1109/JPROC.2010.2043918.

    Google Scholar 

  • Feng, X., Porporato, A., & Rodriguez-Iturbe, I. (2013). Changes in rainfall seasonality in the tropics. Nature Climate Change, 3(9), 811–815. http://doi.org/10.1038/nclimate1907.

    Google Scholar 

  • Foltz, J., Gars, J., ÖzdoÄŸan, M., Simane, B., & Zaitchik, B. (2013). Weather and welfare in Ethiopia. Agricultural and Applied Economics Association.

    Google Scholar 

  • GEOSS. (2014). GEOSS water strategy: From observations to decisions. Retrieved April 7, 2015, from http://ceos.org/document_management/Ad_Hoc_Teams/WSIST/WSIST_GEOSS-Water-Strategy-Full-Report_Jan2014.pdf.

  • Ji, L., & Peters, A. J. (2003). Assessing vegetation response to drought in the Northern great plains using vegetation and drought indices. Remote Sensing of Environment, 87(1), 85–98. http://doi.org/10.1016/S0034-4257(03)00174-3.

    Google Scholar 

  • Jin, S., & Feng, G. (2013). Large-scale variations of global groundwater from satellite gravimetry and hydrological models, 2002–2012. Global and Planetary Change, 106, 20–30. http://doi.org/10.1016/j.gloplacha.2013.02.008.

    Google Scholar 

  • Kerr, Y. H., & Levine, D. (2008). Foreword to the Special Issue on the Soil Moisture and Ocean Salinity (SMOS) Mission. IEEE Transactions on Geoscience and Remote Sensing, 46(3), 583–585. http://doi.org/10.1109/TGRS.2008.917807.

    Google Scholar 

  • Komma, J., Blöschl, G., & Reszler, C. (2008). Soil moisture updating by Ensemble Kalman Filtering in real-time flood forecasting. Journal of Hydrology, 357(3–4), 228–242. http://doi.org/10.1016/j.jhydrol.2008.05.020.

    Google Scholar 

  • McClain, M. E., Subalusky, A. L., Anderson, E. P., Dessu, S. B., Melesse, A. M., Ndomba, P. M., Mligo, C. (2014). Comparing flow regime, channel hydraulics, and biological communities to infer flow–ecology relationships in the Mara River of Kenya and Tanzania. Hydrological Sciences Journal, 59(3–4), 801–819. http://doi.org/10.1080/02626667.2013.853121.

    Google Scholar 

  • Mo, K. C., Long, L. N., Xia, Y., Yang, S. K., Schemm, J. E., & Ek, M. (2011). Drought indices based on the climate forecast system reanalysis and ensemble NLDAS. Journal of Hydrometeorology, 12(2), 181–205. http://doi.org/10.1175/2010JHM1310.1.

    Google Scholar 

  • National Research Council. (2007). Earth science and applications from space: National imperatives for the next decade and beyond. doi:10.17226/11820

  • National Drought Mitigation Center, US Department of Agriculture, US Department of Commerce, & National Oceanic and Atmospheric Administration. (n.d.). United States Drought Monitor. Retrieved from http://droughtmonitor.unl.edu/.

  • Norbiato, D., Borga, M., Degli Esposti, S., Gaume, E., & Anquetin, S. (2008). Flash flood warning based on rainfall thresholds and soil moisture conditions: An assessment for gauged and ungauged basins. Journal of Hydrology, 362(3–4), 274–290. http://doi.org/10.1016/j.jhydrol.2008.08.023.

    Google Scholar 

  • Palmer, W. C. (1965). Meteorological Drought. U.S. Weather Bureau Research Paper 45.

    Google Scholar 

  • Parker, D. D., & Zilberman, D. (1996). The use of information services: The case of CIMIS. Agribusiness, 12(3), 209–218. http://doi.org/10.1002/(SICI)1520-6297(199605/06)12:3<209::AID-AGR2>3.0.CO;2-4.

  • Reichle, R. H. (2005). Global assimilation of satellite surface soil moisture retrievals into the NASA Catchment land surface model. Geophysical Research Letters, 32(2), L02404. http://doi.org/10.1029/2004GL021700.

  • Rodell, M., Velicogna, I., & Famiglietti, J. S. (2009). Satellite-based estimates of groundwater depletion in India. Nature, 460(7258), 999–1002. http://doi.org/10.1038/nature08238.

    Google Scholar 

  • Roy, T., Serrat-Capdevila, A., Gupta, H., & Valdes, J. (2016). A platform for probabilistic multi-model and multi-product streamflow forecasting. Submitted to Water Resources Research.

    Google Scholar 

  • Satti, S., Zaitchik, B., & Siddiqui, S. (2015). The question of Sudan: A hydro-economic optimization model for the Sudanese Blue Nile. Hydrology and Earth System Sciences, 19(5), 2275–2293. http://doi.org/10.5194/hess-19-2275-2015.

    Google Scholar 

  • Shortridge, J. E., Guikema, S. D., & Zaitchik, B. F. (2015). Empirical streamflow simulation for water resource management in data-scarce seasonal watersheds. Hydrology and Earth System Sciences Discussions, 12(10), 11083–11127. http://doi.org/10.5194/hessd-12-11083-2015.

    Google Scholar 

  • Simane, B., Zaitchik, B., & Ozdogan, M. (2013). Agroecosystem analysis of the choke mountain watersheds, Ethiopia. Sustainability, 5(2), 592–616. http://doi.org/10.3390/su5020592.

    Google Scholar 

  • UN Water/Africa. (2015). The Africa Water Vision for 2025: Equitable and Sustainable Use of Water for Socioeconomic Development.

    Google Scholar 

  • United Nations. (2015). Transforming Our World: The 2030 Agenda for Sustainable Development (SDG#6: Clean Water and Sanitation).

    Google Scholar 

  • Wilusz, D., Zaitchik, B., Anderson, M., Hain, C., Yilmaz, M., & Mladenova, I. (n.d.). Monthly monitoring of flooded area in the sudd wetland using low resolution SAR imagery from 2007–2011. In Review.

    Google Scholar 

  • Yilmaz, M. T., Anderson, M. C., Zaitchik, B., Hain, C. R., Crow, W. T., Ozdogan, M., Evans, J. (2014). Comparison of prognostic and diagnostic surface flux modeling approaches over the Nile River Basin. Water Resources Research, 50(1), 386–408. http://doi.org/10.1002/2013WR014194.

    Google Scholar 

  • Zaitchik, B. F., Simane, B., Habib, S., Anderson, M. C., Ozdogan, M., & Foltz, J. D. (2012). Building climate resilience in the Blue Nile/Abay Highlands: A role for Earth system sciences. International Journal of Environmental Research and Public Health, 9(2), 435–61. http://doi.org/10.3390/ijerph9020435.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine M. Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lee, C.M. et al. (2016). Applying Earth Observations to Water Resources Challenges. In: Hossain, F. (eds) Earth Science Satellite Applications. Springer Remote Sensing/Photogrammetry. Springer, Cham. https://doi.org/10.1007/978-3-319-33438-7_6

Download citation

Publish with us

Policies and ethics