Skip to main content

Role of Earth Observation Data in Disaster Response and Recovery: From Science to Capacity Building

  • Chapter
  • First Online:

Part of the book series: Springer Remote Sensing/Photogrammetry ((SPRINGERREMO))

Abstract

Risks from natural hazards such as floods, droughts, earthquakes, and landslides are rising due to increasing populations living in more marginal areas and climatic variability, but our ability to provide warnings and mitigation strategies at short, medium, and long timescales is often challenged by the lack of ground observations in the most vulnerable areas. Satellite remote sensing offers unique global observational capabilities that can provide key insight into the multi-faceted topics of disaster hazard and risk assessment, response, and recovery in a way that ground-based systems cannot do alone. From the vantage point of space, satellite platforms can provide estimates of important hazard-related variables, but have varying degrees of accuracies and spatial resolutions. In some cases these data are used to support direct disaster response such as maps showing the spatial extent of the disaster or impact analyses from detecting pre- and post-event changes on the landscape. Examples of such direct support include the disastrous flood events in Malawi in January 2015 and in the southwestern United States in May and June 2015, and the devastating high-magnitude earthquake that hit Nepal in April 2015 (National Planning Commission 2015).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    www.ifrc.org/.

  2. 2.

    http://www.pdc.org/.

  3. 3.

    https://www.servirglobal.net/.

  4. 4.

    World Bank: http://siteresources.worldbank.org/INTAFRICA/Resources/Zambezi_MSIOA_-_Vol_1_-_Summary_Report.pdf; WWF: http://wwf.panda.org/about_our_earth/about_freshwater/rivers/zambezi/.

References

  • Alfieri, L., Burek, P., Dutra, E., Krzeminski, B., Muraro, D., Thielen, J., & Pappenberger, F. (2013). GloFAS—global ensemble streamflow forecasting and flood early warning. Hydrology and Earth System Sciences, 17, 1161–1175. doi:10.5194/hess-17-1161-2013.

    Article  Google Scholar 

  • Ayalew, L., & Yamagishi, H. (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains. Central Japan, Geomorphology, 65, 15–31. doi:10.1016/j.geomorph.2004.06.010.

    Article  Google Scholar 

  • Bajracharya, B., Murthy, M. S. R., & Shrestha, B. (2014). SERVIR HIMALYA: Enabling improved environmental management and livelihoods in the HKH. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 1, 1277–1281.

    Article  Google Scholar 

  • Bates, P. D., Horritt, M. S., & Fewtrell, T. J. (2010). A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling. Journal of Hydrology, 387(1–2), 33–45.

    Article  Google Scholar 

  • Baum, R. L., Godt, J. W., & Savage, W. Z. (2010). Estimating the timing and location of shallow rainfall induced landslides using a model for transient, unsaturated infiltration. Journal of Geophysical Research, 115(F03013). doi:10.1029/2009JF001321.

  • Boccardo, P. (2013). New perspectives in emergency mapping. European Journal of Remote Sensing, 46, 571–582.

    Article  Google Scholar 

  • Brunetti, M. T., Peruccacci, S., Rossi, M., Luciani, S., Valigi, D., & Guzzetti, F. (2010). Rainfall thresholds for the possible occurrence of landslides in Italy. Natural Hazards and Earth Systems Sciences, 10, 447–458.

    Article  Google Scholar 

  • Caine, N. (1980). The rainfall intensity: Duration control of shallow landslides and debris flows. Geografiska Annaler Series A, Physical Geography, 62(1/2), 23–27.

    Article  Google Scholar 

  • Dahal, R. K., & Hasegawa, S. (2008). Representative rainfall thresholds for landslides in the Nepal Himalaya. Geomorphology, 100, 429–443. doi:10.1016/j.geomorph.2008.01.014.

    Article  Google Scholar 

  • Dai, F. C., Lee, C. F., Tham, L. G., Ng, K. C., & Shum, W. L. (2004). Logistic regression modelling of storm-induced shallow landsliding in time and space on natural terrain of Lantau Island, Hong Kong. Bulletin of Engineering Geology and the Environment, 63, 315–327. doi:10.1007/s10064-004-0245-6.

    Article  Google Scholar 

  • Davies, D. K., Ilavajhala, S., Wong, M. M., & Justice, C. O. (2009). Fire information for resource management system: Archiving and distributing MODIS active fire data. IEEE Transactions on Geoscience and Remote Sensing, 47(1), 72–79.

    Article  Google Scholar 

  • Ermini, L., Catani, F., & Casagli, N. (2005). Artificial neural networks applied to landslide susceptibility assessment. Geomorphology, 66(1–4), 327–343. doi:10.1016/j.geomorph.2004.09.025.

    Article  Google Scholar 

  • Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., et al. (2007). The shuttle radar topography mission. Reviews of Geophysics, 45(RG2004). doi:10.1029/2005RG000183.

  • Flores Cordova, A. I., Anderson, E. R., Irwin, D., & Cherrington, E. (2012). Contributions of SERVIR in promoting the use of space data in climate change and disaster management. In 63rd International Astronautical Congress 2012. Conference Proceedings. Naples, Italy.

    Google Scholar 

  • Giglio, L. (2010). MODIS collection 5 active fire product user’s guide version 2.4. Science Systems and Applications, Inc.

    Google Scholar 

  • Graves, S., Hardin, D., Sever, T., & Irwin, D. (2005). Data access and visualization for SERVIR: An environmental monitoring and decision support system for Mesoamerica. In Earth Science Technology Conference.

    Google Scholar 

  • Gurung, D. R., Shrestha, M., Shrestha, N., Debnath, B., Jishi, G., Bajracharya, R., et al. (2014). Multi scale disaster risk reduction systems, space and community based experiences over HKH region. ISPRS—International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 1, 1301–1307.

    Article  Google Scholar 

  • Guzzetti, F., Peruccacci, S., Rossi, M., & Stark, C. P. (2008). The rainfall intensity–duration control of shallow landslides and debris flows: An update. Landslides 5, 3–17. doi:10.1007/s10346-007-0112-1.

    Article  Google Scholar 

  • Hardin, D., Graves, S., Sever, T., & Irwin, D. (2005). Visualizing Earth science data for environmental monitoring and decision support in Mesoamerica: The SERVIR project. In AGU Spring Meeting Abstracts,1.

    Google Scholar 

  • Hervas, J., Barredo, J. I., Rosin, P. L., Pasuto, A., Mantovani, F., & Silvano, S. (2003). Monitoring landslides from optical remotely sensed imagery: The case history of Tessina landslide, Italy. Geomorphology, 54, 63–75. doi:10.1016/S0169-555X(03)00056-4.

    Article  Google Scholar 

  • Hong, Y., Adler, R., & Huffman, G. (2006). Evaluation of the potential of NASA multi-satellite precipitation analysis in global landslide hazard assessment. Geophysical Reseach Letters, 33(L22402), 1–5. doi:10.1029/2006GL028010.

    Google Scholar 

  • Hossain, F. (2015). Data for all: Using satellite observations for social good, Eos, 96. doi:10.1029/2015EO037319.

  • ICIMOD. (2015). Nepal earthquake 2015: Disaster relief and recovery information platform (NDRRIP). Retrieved 2015, October 25, from http://apps.geoportal.icimod.org/ndrrip/.

  • Iverson, R. M. (2000). Landslide triggering by rain infiltration. Water Resources Research, 36(7), 1897–1910.

    Article  Google Scholar 

  • Justice, C. O., Giglio, L., Roy, D., Boschetti, L., Csiszar, I., Davies, D., et al. (2011). MODIS-derived global fire products. In Land remote sensing and global environmental change (pp. 661–679). New York: Springer.

    Google Scholar 

  • Kargel, J. S., Leonard, G. J., Shugar, D. H., Haritashya, U. K., Bevington, A., Fielding, E. J., et al. (2016). Geomorphic and geologic controls of geohazards induced by Nepal’s 2015 Gorkha earthquake. Science, 351(6269).

    Google Scholar 

  • Kirschbaum, D. B., Adler, R., Hong, Y., Hill, S., & Lerner-Lam, A. (2010). A global landslide catalog for hazard applications: Method, results, and limitations. Natural Hazards, 52(3), 561–575. doi:10.1007/s11069-009-9401-4.

    Article  Google Scholar 

  • Kirschbaum, D. B., Adler, R., Hong, Y., Kumar, S., Peters-Lidard, C., & Lerner-Lam, A. (2012). Advances in landslide nowcasting: Evaluation of a global and regional modeling approach. Environmental Earth Sciences, 66(6), 1683–1696. doi:10.1007/s12665-011-0990-3.

    Article  Google Scholar 

  • Kirschbaum, D. B., Stanley, T., & Simmons, J. (2015a). A dynamic landslide hazard assessment system for Central America and Hispaniola. Natural Hazards and Earth System Sciences, 1–32.

    Google Scholar 

  • Kirschbaum, D. B., Stanley, T., & Yatheendradas, S. (2015b). Modeling landslide susceptibility over large regions with fuzzy overlay. Landslides. doi:10.1007/s10346-015-0577-2.

    Google Scholar 

  • Kirschbaum, D. B., Stanley, T., & Zhou, Y. (2015c). Spatial and temporal analysis of a global landslide catalog. Geomorphology. doi:10.1016/j.geomorph.2015.03.016.

    Google Scholar 

  • Larsen, M. C., & Simon, A. (1993). A rainfall intensity-duration threshold for landslides in a humid-tropical environment, Puerto Rico. Geografiska Annaler Series A-physical Geography, 75(1/2), 13–23.

    Article  Google Scholar 

  • Lee, S., & Pradhan, B. (2007). Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides, 4, 33–41. doi:10.1007/s10346-006-0047-y.

    Article  Google Scholar 

  • Lewis, S. (2009). Remote sensing for natural disasters: Facts and figures. Science and Development Network. Retrieved 2015, October 16, from http://www.scidev.net/global/earth-science/feature/remote-sensing-for-natural-disasters-facts-and-figures.html.

  • Liang, X., Lettenmaier, D. P., Wood, E. F., & Burges, S. J. (1994). A simple hydrologically based model of land surface water and energy fluxes for general circulation models. Journal of Geophysical Research: Atmospheres (1984–2012), 99(D7), 14415–14428.

    Google Scholar 

  • Macharia, D., Korme, T., Policelli, F., Irwin, D., Adler, B., & Hong, Y. (2010). SERVIR-Africa: Developing an integrated platform for floods disaster management in Africa. In 8th International Conference African Association of Remote Sensing of the Environment (AARSE), Addis Ababa, Ethiopia, 25–29 October, 2010.

    Google Scholar 

  • Mathew, J., Jha, V. K., & Rawat, G. S. (2009). Landslide susceptibility zonation mapping and its validation in part of Garhwal Lesser Himalaya, India, using binary logistic regression analysis and receiver operating characteristic curve method. Landslides, 6, 17–26. doi:10.1007/s10346-008-0138-z.

    Article  Google Scholar 

  • Mazzanti, P. (2011). Displacement monitoring by terrestrial SAR interferometry for geotechnical purposes. Geotechnical Instrumentation News, (June), 25–28.

    Google Scholar 

  • McCann, D. G., & Cordi, H. P. (2011). Developing international standards for disaster preparedness and response: How do we get there? World Medical & Health Policy, 3, 1–4. doi:10.2202/1948-4682.1154.

    Google Scholar 

  • Melchiorre, C., Matteucci, M., Azzoni, A., & Zanchi, A. (2008). Artificial neural networks and cluster analysis in landslide susceptibility zonation. Geomorphology, 94(3–4), 379–400. doi:10.1016/j.geomorph.2006.10.035.

    Article  Google Scholar 

  • National Planning Commission. (2015). Nepal earthquake 2015: Post disaster needs assessment. Government of Nepal. Retrieved 2016, January 14, from http://www.npc.gov.np/images/download/PDNA_Volume_A.pdf.

  • Neal, J. (2014). Personal communication. Bristol, UK: School of Geographical Sciences, University of Bristol.

    Google Scholar 

  • Neal, J., Schumann, G., Bates, P., Buytaert, W., Matgen, P., & Pappenberger, F. (2009). A data assimilation approach to discharge estimation from space. Hydrological Processes, 23, 3641–3649. doi:10.1002/hyp.7518.

    Article  Google Scholar 

  • Neal, J. C., Schumann, G., & Bates, P. D. (2012). A subgrid channel model for simulating river hydraulics and floodplain inundation over large and data sparse areas. Water Resources Research, 48. doi: 10.1029/2012WR012514.

  • Paiva, R. C. D., Collischonn, W., & Tucci, C. E. M. (2011). Large scale hydrologic and hydrodynamic modelling using limited data and a GIS based approach. Journal of Hydrology, 406, 170–181.

    Article  Google Scholar 

  • Paiva, R. C. D., Collischonn, W., & Buarque, D. C. (2013). Validation of a full hydrodynamic model for large-scale hydrologic modelling in the Amazon. Hydrological Processes, 27, 333–346.

    Article  Google Scholar 

  • Pappenberger, F., Beven, K. J., Hunter, N., Gouweleeuw, B., Bates, P., De Roo, A., & Thielen, J. (2005). Cascading model uncertainty from medium range weather forecasts (10 days) through a rainfall-runoff model to flood inundation predictions within the European Flood Forecasting System (EFFS). Hydrology and Earth System Sciences, 9(4), 381–393.

    Article  Google Scholar 

  • Pappenberger, F., Dutra, E., Wetterhall, F., & Cloke, H. (2012). Deriving global flood hazard maps of fluvial floods through a physical model cascade. Hydrology and Earth System Sciences, 16, 4143–4156.

    Article  Google Scholar 

  • Petley, D. N. (2011). Global deaths from landslides in 2010 (updated to include a comparison with previous years). Landslide Blog. Retrieved from http://blogs.agu.org/landslideblog/.

  • Petley, D. N., Crick, W. D. O., & Hart, A. B. (2002). The use of satellite imagery in landslide studies in high mountain areas. In The Proceedings of the 23rd Asian Conference on Remote Sensing (ACRS 2002), Kathmandu.

    Google Scholar 

  • Pradhan, B., & Lee, S. (2010). Landslide susceptiblity assessment and factor effect analysis: Backpropagation artifical neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environmental Modelling and Software, 25, 747–759. doi:10.1016/j.envsoft.2009.10.016.

    Article  Google Scholar 

  • Rossi, M., Kirschbaum, D., Luciani, S., & Guzzetti, A. C. M. F. (2014). Comparison of satellite rainfall estimates and rain gauge measurements in Italy, and impact on landslide modeling. Natural Hazards and Earth System Sciences (in preparation).

    Google Scholar 

  • Saito, H., Nakayama, D., & Matsuyama, H. (2010). Relationship between the initiation of a shallow landslide and rainfall intensity—Duration thresholds in Japan. Geomorphology, 118(1–2), 167–175. doi:10.1016/j.geomorph.2009.12.016.

    Article  Google Scholar 

  • Sampson, C., Christopher, C., Smith, A. M., Bates, P. D., Neal, J. C., Alfieri, L., & Freer, J. E. (2015). A high-resolution global flood hazard model. Water Resources Research. doi:10.1002/2015WR016954.

    Google Scholar 

  • Schumann, G. J.-P., Neal, J. C., Voisin, N., Andreadis, K. M., Pappenberger, F., Phanthuwongpakdee, N., et al. (2013). A first large scale flood inundation forecasting model. Water Resources Research, 49(10), 6248–6257.

    Article  Google Scholar 

  • Schumann, G. J.-P., Andreadis, K., Niebuhr, E., Rashid, K., & Njoku, E. (2014). A simple satellite and model based index for forecasting large-scale flood inundation in data-poor regions. In Proceedings of the EGU General Assembly, 1157, EGU, 28 April–2 May 2014.

    Google Scholar 

  • Thielen, J., Bartholmes, J., Ramos, M.-H, & De Roo, A. (2009). The European flood alert system part 1: Concept and development. Hydrology and Earth System Sciences, 13, 125–140.

    Google Scholar 

  • USGS. (2015). Hazards Data Distribution System (HDDS) Explorer—USGS. Retrieved 2015, October 28, from http://hddsexplorer.usgs.gov.

  • Wang, J., Hong, Y., Li, L., Gourley, J. J., Khan, S. I., Yilmaz, K. K., et al. (2011). The coupled routing and excess storage (CREST) distributed hydrological model. Hydrological Sciences Journal, 56(1), 84–98.

    Article  Google Scholar 

  • Winsemius, H. C., Van Beek, L. P. H., Jongman, B., Ward, P. J., & Bouwman, A. (2013). A framework for global river flood risk assessments. Hydrology and Earth System Sciences, 17, 1871–1892.

    Article  Google Scholar 

  • WMO. (2009). Regional Consultation Meeting on Zambezi River Basin Flood Forecasting and Early Warning Strategy and WMO Information System (WIS) and WIGOS Pilot Project, Final Report, WMO and USAID, Maputo, Mozambique, Africa, 1–5 Dec. 2009. Geneva, Switzerland: World Meteorological Organization (WMO).

    Google Scholar 

  • Yamazaki, D., Kanae, S., Kim, H., & Oki, T. (2011). A physically-based description of floodplain inundation dynamics in a global river routing model. Water Resources Research, 47, W04501. doi:10.1029/2010WR009726.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guy Schumann , Dalia Kirschbaum or Eric Anderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schumann, G., Kirschbaum, D., Anderson, E., Rashid, K. (2016). Role of Earth Observation Data in Disaster Response and Recovery: From Science to Capacity Building. In: Hossain, F. (eds) Earth Science Satellite Applications. Springer Remote Sensing/Photogrammetry. Springer, Cham. https://doi.org/10.1007/978-3-319-33438-7_5

Download citation

Publish with us

Policies and ethics