Advertisement

Adaptive Cuckoo Search Algorithm for the Bin Packing Problem

  • Zakaria ZendaouiEmail author
  • Abdesslem Layeb
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 1)

Abstract

Bin Packing Problem (BPP) is one of the most difficult NP-hard combinatorial optimization problems. For that, an adaptive version of Cuckoo Search (CS) is used to deal with this problem. This algorithm has proved to be effective in solving many optimization problems. The idea of the adaptive CS (ACS) is based on integer permutations based levy flight and a decoding mechanism to obtain discrete solutions. The ranked order value (ROV) rule is the key to any passage from a continuous space to a combinatorial one. The experimental results show that ACS can be superior to some metaheuristics for a number of BPP instances.

Keywords

Combinatorial optimization Cuckoo search First fit algorithm Bin packing problem 

References

  1. 1.
    Martello, S., Toth, P.: Bin-packing problem. In: Knapsack Problems: Algorithms and Computer Implementations (8), pp. 221–245. Wiley (1990)Google Scholar
  2. 2.
    Coffman, E.G. Jr., Garey, M.R., Johnson, D.S.: Approximation algorithms for bin packing: a survey. In: Hochbaum, D. (ed.) Approximation Algorithms for NP-Hard Problems, pp. 46–93. PWS Publishing, Boston (1996)Google Scholar
  3. 3.
    Fleszar, K., Hindi, K.S.: New heuristics for one-dimensional bin-packing. Comput. Oper. Res. 29(7), 821–839 (2002)CrossRefzbMATHGoogle Scholar
  4. 4.
    Gandomi, A.H., Yang, X.S., Talatahari, S., Alavi, A.H.: Metaheuristic Applications in Structures and Infrastructures. Newnes (2013)Google Scholar
  5. 5.
    Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press, Bristol (2010)Google Scholar
  6. 6.
    Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. Evolut. Comput. IEEE Trans. 1(1), 67–82 (1997)CrossRefGoogle Scholar
  7. 7.
    lvim, A.C.F., Ribeiro, C.C., Glover, F., Aloise, D.J.: A hybrid improvement heuristic for the one-dimensional bin packing problem. J. Heuristics 10, 205–229 (2004)Google Scholar
  8. 8.
    Kao, C.-Y., Lin, F.-T.: A stochastic approach for the one-dimensional bin-packing problems. Syst. Man Cybern. 2, 1545–1551 (1992)Google Scholar
  9. 9.
    Scholl, A., Klein, R., Juergens, C.: Bison: a fast hybrid procedure for exactly solving the one-dimensional bin packing problem. Comput. Oper. Res. 24(7), 627–645 (1997)CrossRefzbMATHGoogle Scholar
  10. 10.
    Falkenauer, E.: A hybrid grouping genetic algorithm for bin packing. J. Heuristics 2, 5–30 (1996)CrossRefGoogle Scholar
  11. 11.
    Wang, S., Shi, R., Wang, L., Ge, M.: Study on improved ant colony optimization for bin-packing problem. In: International Conference on Computer Desingn and Application (4), pp. 489--491 (2010)Google Scholar
  12. 12.
    Yang, X.S., Deb, S.: Cuckoo search via lévy flights. In: World Congress on Nature and Biologically Inspired Computing. NaBIC 2009, pp. 210–214. IEEE, New York (2009)Google Scholar
  13. 13.
    Payne, R.B., Sorenson, M.D., Klitz, K.: The Cuckoos. Oxford University Press (2005)Google Scholar
  14. 14.
    Pavlyukevich, I.: Lévy flights, non-local search and simulated annealing. J. Comput. Phys. 226, 1830–1844 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Tein, L.H., Ramli, R.: Recent advancements of nurse scheduling models and a potential path. In: Proceedings 6th IMT-GT Conference on Mathematics, Statistics and its Applications (ICMSA 2010), pp. 395–409 (2010)Google Scholar
  16. 16.
    Dhivya, M.: Energy efficient computation of data fusion in wireless sensor networks using cuckoo based particle approach (CBPA). Int. J. Commun. Netw. Syst. Sci. 4(4), 249–255 (2011)Google Scholar
  17. 17.
    Shlesinger, M.F., Zaslavsky, G.M., Frisch, U.: Lévy flights and related topics in physics. In: Levy Flights and Related Topics in Physics, vol. 450 (1995)Google Scholar
  18. 18.
    Yang, X.S., Deb, S.: Engineering optimisation by cuckoo search. Int. J. Math. Model. Numer. Optim. 1(4), 330–343 (2010)zbMATHGoogle Scholar
  19. 19.
    Yang, X.S.: Nature-Inspired Metaheuristic Algorithms, pp. 105–107, 2nd edn. Luniver Press (2010)Google Scholar
  20. 20.
    Alvim, A.C., Ribeiro, C.C., Glover, F., Aloise, D.J.: A hybrid improvement heuristic for the one-dimensional bin packing problem. J. Heuristics 10(2), 205–229 (2004)CrossRefGoogle Scholar
  21. 21.
    Monaci, M.: Algorithms for packing and scheduling problems. Q. J. Belg. Fr. Ital. Oper. Res. Soc. 1(1), 85–87 (2003)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Liang, J., Pan, Q.K., Tiejun, C., Wang, L.: Solving the blocking flow shop scheduling problem by a dynamic multi-swarm particle swarm optimizer. Int. J. Adv. Manuf. Technol. 55(5–8), 755–762 (2011)CrossRefGoogle Scholar
  23. 23.
    Tasgetiren, M.F., Liang, Y.C., Sevkli, M., Gencyilmaz, G.: Particle swarm optimization and differential evolution for the singlemachine total weighted tardiness problem. Int. J. Prod. Res. 44(22), 4737–4754 (2006)CrossRefzbMATHGoogle Scholar
  24. 24.
    Qian, B., Wang, L., Rong, H., Wang, W.L., Huang, D.X., Wang, X.: A hybrid differential evolution method for permutation flow-shop scheduling. Int. J. Adv. Manuf. Technol. 38(7–8), 757–777 (2008)CrossRefGoogle Scholar
  25. 25.
    Liu, B., Wang, L., Qian, B., Jin, Y.H.: Hybrid Particle Swarm Optimization for Stochastic Flow Shop Scheduling with No-wait Constraint. International Federation of Automatic Control, Seoul (2008)Google Scholar
  26. 26.
    Bean., J.C.: Genetic algorithms and random keys for sequencing and optimization. ORSA J. Comput. 6, 154–160 (1994)Google Scholar
  27. 27.
    Falkenauer, E., Delchambre, A.: A genetic algorithm for bin packing and line balancing. In: Proceedings of the IEEE 1992 International Conference on Robotics and Automation, Nice, France (May 1992)Google Scholar
  28. 28.
    Layeb, A., Benayad, Z.: A novel firefly algorithm based ant colony optimization for solving combinatorial optimization problems. Int. J. Comput. Sci. Appl. 11(2), 19–37 (2014)Google Scholar
  29. 29.
    Layeb, A., Boussalia, S.R.: A novel quantum inspired cuckoo search algorithm for bin packing problem. Int. J. Inf. Technol. Comput. Sci. (IJITCS) 4(5), 58 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.MISC Laboratory, Department of Computer Science and Its ApplicationsUniversity of Constantine 2ConstantineAlgeria

Personalised recommendations