Advertisement

Enhanced Chemical Reaction Optimization for Multi-objective Traveling Salesman Problem

  • Samira BouzoubiaEmail author
  • Abdesslem Layeb
  • Salim Chikhi
Conference paper
  • 531 Downloads
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 1)

Abstract

The multi-objective traveling salesman problem (MOTSP) is an essential and challenging topic in the domains of engineering and optimization problems. In this paper we propose new variant of multi-objective chemical reaction optimization (MOCRO) called Enhanced MOCRO (EMOCRO) for solving MOTSP. The key idea of the proposed variant is the use of the dominance strategy and chemical reaction concepts. Compared to MOCRO, EMOCRO has a reduced number of parameters and a simplified general scheme. In order to give the quality of the algorithm, several MOTSP instances taken from the TSP library are used. The proposed approach is statistically compared with MOCRO and NSGA2. Results indicate that the EMOCRO outperformed other approaches in most of the test instances.

Keywords

Chemical reaction optimization Multi-objective optimization Bio-inspired algorithm Multi-objective traveling salesman problem 

References

  1. 1.
    Lust, T., Teghem J.: The multiobjective traveling salesman problem: a survey and new approach. In: Nature Inspired Computing. vol. 272, pp. 119–137. Springer, Berlin (2010)Google Scholar
  2. 2.
    Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. John Wiley and Sons Ltd. (2001)Google Scholar
  3. 3.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)CrossRefGoogle Scholar
  4. 4.
    Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. Technical report (2001)Google Scholar
  5. 5.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading, MA, USA (1989)Google Scholar
  6. 6.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Lam, A., Li, V.: Chemical-reaction-inspired meta-heuristic for optimization. IEEE Trans. Evol. Comput. 14, 381–399 (2010)CrossRefGoogle Scholar
  8. 8.
    Fisher, R., Richter, K.: Solving a multiobjective traveling salesman problem by dynamic programming. Mathematische operations for schung und statistik, Series Optimization 13, 247–252 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Paquete, L., Stutzle, T.: Design and analysis of stochastic local search for the multiobjective traveling salesman problem. Comput. Oper. Res. 36, 2619–2631 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hansen, M.P.: Use of substitute scalarizing functions to guide a local search based heuristic: the case of moTSP. J. Heuristics 6, 419–431 (2000)CrossRefzbMATHGoogle Scholar
  11. 11.
    Bouzoubia, S., Layeb, A., Chikhi, S.: A multi-objective chemical reaction optimisation algorithm for multi-objective travelling salesman problem. Int. J. Innovative Comput. Appl. 6, 87–101 (2014)CrossRefGoogle Scholar
  12. 12.
    Gao, F., Zhou, A., Zhang, G.: An estimation of distribution algorithm based on decomposition for the multi-objective TSP. In: International Conference on Natural Computation (ICNC 2012), pp. 817–821 (2012)Google Scholar
  13. 13.
    Zhang, Q., Li, H.: MOEA/D: a multi-objective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)CrossRefGoogle Scholar
  14. 14.
    Ke, L., Zhang, Q., Battiti, R.: MOEA/D-ACO: a multiobjective evolutionary algorithm using decomposition and ant colony. IEEE Trans. Cybern. 43(6), 1845–1859 (2013)CrossRefGoogle Scholar
  15. 15.
    Iredi, S., Merkle, D., Middendorf, M.: Bi-criterion optimization with multi colony ant algorithms. Evolutionary Multi-criterion Optimization, pp. 359-372. Springer (2001)Google Scholar
  16. 16.
    He, J.: Solving the multiobjective multiple traveling salesmen problem using membrane algorithm. Bio-inspired Computing, Theories and Applications, Communications in Computer and Information Science, vol. 472, pp. 171–175 (2014)Google Scholar
  17. 17.
    Xu, J., Lam, A.Y.S., Li, V.O.K.: Chemical reaction optimization for the grid scheduling problem. In: Proceedings of the IEEE ICC, pp. 1–5 (2010)Google Scholar
  18. 18.
    Sun, J., Wang, Y., Li, J., Gao, K.: Hybrid algorithm based on chemical reaction optimization and lin-kernighan local search for the traveling salesman problem. In: Seventh International Conference on Natural Computation, pp. 1518–1521 (2011)Google Scholar
  19. 19.
    Truong, T.K., Li, K., Xua, Y.: Chemical reaction optimization with greedy strategy for the 0–1 knapsack problem. Appl. Soft Comput. 13, 1774–1780 (2013)CrossRefGoogle Scholar
  20. 20.
    Li, J.Q., Pan, Q.K.: Chemical reaction optimization for flexible job-shop scheduling problems with maintenance activity. Appl. Soft Comput. 12, 2896–2912 (2012)CrossRefGoogle Scholar
  21. 21.
    Reinelt, G.: TSPLIB a traveling salesman problem library. ORSA J. Comput. 3, 376–384 (1991)CrossRefzbMATHGoogle Scholar
  22. 22.
    Zitzler, E.: Evolutionary algorithms for multi-objective optimization: methods and applications. Ph.D. thesis, Swiss Federal Institute of Technology, Zurich (1999)Google Scholar
  23. 23.
    Deb, K., Agrawal, S., Pratab, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithms for multi-objective optimization. Technical report, Institute of technology, Kanpur India (2000)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Samira Bouzoubia
    • 1
    Email author
  • Abdesslem Layeb
    • 1
  • Salim Chikhi
    • 1
  1. 1.MISC Laboratory, Department of Fundamental Computer Science and Its ApplicationsConstantine 2 Abdelhamid Mehri UniversityConstantineAlgeria

Personalised recommendations