Advertisement

Bioinspired Inference System for Medical Image Segmentation

  • Hakima ZouaouiEmail author
  • Abdelouahab Moussaoui
Conference paper
  • 509 Downloads
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 1)

Abstract

In the present article, we propose a new approach for the segmentation of the MRI images of the Multiple Sclerosis which is an autoimmune inflammatory disease affecting the central nervous system. Clinical tracers are used nowadays for the diagnosis and the Inter-observer and intra-observer therapeutic assessment. However, those tracers are subjective and subject to a huge variability. The Magnetic Resonance Imaging (MRI) allows the visualization of the brain and it is widely used in the diagnosis and the follow-up of the patients suffering from MS. Aiming to automate a long and tedious process for the clinician, we propose the automatic segmentation of the MS lesions. Our algorithm of segmentation is composed of three stages: segmentation of the brain into regions using the algorithm FCM (Fuzzy C-Means) in order to obtain the characterization of the different healthy tissues (White matter, grey matter and cerebrospinal fluid (CSF)), the elimination of the atypical data (outliers) of the white matter by the optimization algorithm PSOBC (Particle Swarm Optimization-Based image Clustering), finally, the use of a Mamdani-type fuzzy model to extract the MS lesions among all the absurd data.

Keywords

Multiple sclerosis Magnetic resonance imaging Segmentation Fuzzy C-Means Particle swarm optimization Mamdani 

References

  1. 1.
    Miller, D.H.: Biomarkers and surrogate outcomes in neurodegenerative disease: lessons from multiple sclerosis. NeuroRX. 1(2), 284–294 (2004)CrossRefGoogle Scholar
  2. 2.
    Daniel, G.-L., Sylvain, P., Douglas, A., Louis, C., Christian, B.: Trimmed-likelihood estimation for focal lesions and tissue segmentation in multisequence MRI for multiple sclerosis. In: IEEE Transactions on Medical Imaging, Institute of Electrical and Electronics Engineers (IEEE) (2011)Google Scholar
  3. 3.
    Jason, E.H., Brian, N., Sunanda, M.: An information theoretic approach via IJM to segmenting MR images with MS lesions. In: IEEE 27th International Symposium on Computer-Based Medical Systems (2014)Google Scholar
  4. 4.
    Barkhof, F.: The clinico-radiological paradox in multiple sclerosis revisited. Current Opinion in Neurology, vol. 15, pp. 239–245. 3, (2002)Google Scholar
  5. 5.
    Lucchinetti, C.F., Parisi, J., Bruck, W.: The pathology of multiple sclerosis. Neurol. Clinics 23, 77–105 (2005)CrossRefGoogle Scholar
  6. 6.
    Van Leemput, K., Maes, F., Vandermeulen, D., Colchester, D., Suetens, P.: Automated segmentation of multiple sclerosis lesions by model outlier detection. IEEE TMI 20(8), 677–689 (2001)Google Scholar
  7. 7.
    Anbeek, P., Vinchen, K.L., van Osch, M.J.P., Bisschops, R.H.C., van der Grond, J.: Probabilistic segmentation of white matter lesions in MR imaging. NeuroImage 21, 1037–1044 (2004)CrossRefGoogle Scholar
  8. 8.
    Souplet, J.C., Lebrun, C., Anyche, N., Malandain, G.: An Automatic Segmentation of T2-FLAIR Multiple Sclerosis Lesions. 3D Segmentation in the Clinic: A Grand Challenge II: MS lesion segmentation (2008)Google Scholar
  9. 9.
    Dugas-Phocion, G., Gonzalez, M.A., Lebrun, C., Chanalet, S., Bensa, C., Malandain, G., Ayache, N.: Hierarchical Segmentation of Multiple Sclerosis Lesions Multi-Sequence MRI. ISBI’08Google Scholar
  10. 10.
    Garcia-Lorenzo, D., Prima, S., Morrissey, S.P., Barillot, C.: A Robust Expectation-Maximization Algorithm for Multiple Sclerosis Lesion Segmentation. Segmentation in the Clinic: A Grand Challenge II: lesion segmentation (2008)Google Scholar
  11. 11.
    Bricq, S., Collet, Ch., Armspach, JP.: Markovian segmentation of 3D brain MRI to detect multiple sclerosis lesions. In: IEEE international conference on image processing, ICIP’2008, pp. 733–736 (2008)Google Scholar
  12. 12.
    Neykov, N., Neytchev, P.: A robust alternative of the of the Maximum Likelihood Estimator. COMPSTAT—Short Communications. Dubrovnik, Yugoslavia, pp. 99–100 (1990)Google Scholar
  13. 13.
    Prastawa, M., Guido G.: Automatic MS Lesion Segmentation by Outlier Detection and Information Theoretic Region Partitioning. 3D Segmentation in the Clinic: A Grand Challenge II: MS lesion segmentation (2008)Google Scholar
  14. 14.
    Wu, Y., Warfield, S.K., Tan, I.L., Wessl III, W.M., Meier, D.S., Van Schijndel, R.A., Barkhof, F., Guttmann, C.: Automated segmentation of multiple sclerosis lesion subtype with multichannel MRI. NeuroImage 32, 1025–1215 (2006)Google Scholar
  15. 15.
    Tu, Z., Narr, K., Dinov, I., Dollar, P., Thompson, P., Toga, A.: Brain anatomical structure parsing by hybrid discriminative/generative models. IEEE TMI (2008)Google Scholar
  16. 16.
    Morra, J. Tu, Z., Toga, A., Thompson, P.: Automatic Segmentation of MS Lesions Using a Contextual Model for the MICCAI Grand Challenge. 3D Segmentation in the Clinic: A Grand Challenge II: MS lesion segmentation (2008)Google Scholar
  17. 17.
    Anbeek, P., Vinchen K.L.. Viergever, M.A.: Antomated MS-Lesion Segmentation by K-Nearest Neighbor Classification. 3D Segmentation in the Clinic: A Grand Challenge II: MS lesion segmentation (2008)Google Scholar
  18. 18.
    Bazin, P.L., Pham, D.L.: Statistical and topological atlas based brain image segmentation. MICCAI (2007)Google Scholar
  19. 19.
    Christ, M., Parvathi, R.M.S.: Magnetic resonance brain image segmentation, intern. J. VLSI Design Commun. Syst. 3, 121–133 (2012)CrossRefGoogle Scholar
  20. 20.
    Dey, V., Zhang, Y., Zhong, M.: A review on image segmentation techniques with remote sensing perspective. In: Wagner, W., Szekely, B. (eds.) ISPRS TC VII Symposuim-100 Years ISPRS, vol. XXXVII, pp. 31–42, Vienna, Austria (2011)Google Scholar
  21. 21.
    Ciesielski, K.C., Udupa, J.K.: Region-based segmentation: fuzzy connectedness graph cut and related algorithms. In: Deserno, T.M. (ed.), Biomedical Image Pressing, Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg, pp. 251–278 (2011)Google Scholar
  22. 22.
    Nakib, A., Oulhadj, H., Siarry, P.: A thresholding method based on two dimensional fractional differentiation. Image Vis. Comput. 27, 1343–1357 (2009)CrossRefGoogle Scholar
  23. 23.
    Papari, G., Petkov, N.: Edge and line oriented contour detection. State of the art. Image Vis. Comput. 29, 79–103 (2011)CrossRefGoogle Scholar
  24. 24.
    Benaichouche, A.N., Oulhadj, H., Siarry, P.: Improved spatial fuzzyc-means clustering for image segmentation using PSO initialization, Mahalanobis distance and post-segmentation correction. Digit. Signal Proc. 23, 1390–1400 (2013)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Bezdek, J., Hall, l., Clarke. L.: Review of MR image segmentation techniques using pattern recognition. Med. Phys. 20, 1033–1048, 1993Google Scholar
  26. 26.
    Ghosh, S., Kumar, S.: Comparative analysis of K-means and fuzzy C-means algorithms. Int. J. Adv. Comput. Sci. Appl. 4(4) (2013)Google Scholar
  27. 27.
    Tejwant, S., Manish, M.: Performance comparison of fuzzy C means with respect to other clustering algorithm. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 4(5) (2014)Google Scholar
  28. 28.
    Bezdek, J.C.: Fuzzy mathematics in pattern classification. Ph.D dissertation, Cornell University, Ithaca, NY, 1973Google Scholar
  29. 29.
    Zouaoui, H., Moussaoui, A.: Clustering par Fusion Floue de Données Appliqué à la Segmentation d’Images IRM Cérébrales. CIIA, vol. 547 von CEUR Workshop Proceedings, CEUR-WS.org (2009)Google Scholar
  30. 30.
    Premalatha. K., Natarajan, A.M.: A New approach for data clustering based on PSO with local search. Comput. Inform. Sci. 1(4) (2008)Google Scholar
  31. 31.
    Clark, M., Hall, L., Goldgof, D., Clark, L., Velthuizen R., and Silbiger, M.: MRI segmentation using fuzzy clustering techniques. IEEE Eng. Med. Biol. 730–742 (1994)Google Scholar
  32. 32.
    Filippi, M, et al.: Correlations between changes in disability and T2 weighted brain MRI activity in multiple sclerosis. A follow-up study. 2, Neurology, 45, 255–260 (1995)Google Scholar
  33. 33.
    Barkhof, F.: MRI in multiple sclerosis: correlation with expanded disability status scale (EDSS). Multiple Sclerosis 5, 283–286 (1999)Google Scholar
  34. 34.
    El Dor, A., Lepagnot, J., Nakib, A., Siarry, P.:PSO-2S optimization algorithm for brain MRI segmentation. In: Genetic and Evolutionary Computing, pp. 13–22. Springer (2014)Google Scholar
  35. 35.
    Selvi, V., Umarani, Dr. R.: Comparative analysis of ant colony and particle swarm optimization techniques. Int. J. Comput. Appl. (0975–8887) 5(4) (2010)Google Scholar
  36. 36.
    Shi, Y., Eberhart, R.C.: Empirical study of particle swarm optimization, vol. 3, pp. 1945–1950 (1999)Google Scholar
  37. 37.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948. Perth, Australia (1995)Google Scholar
  38. 38.
    Aït-Ali, L.S., Prima, S., Edan, G., Barillot. C.: Longitudinal segmentation of MS lesions in multimodal brain MRI. In: 15éme Congrès Francophone AFRIF/AFIA de Reconnaissance des Formes et Intelligence Artificielle (RFIA), Tours, France, Janvier (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Computer Science DepartmentFerhat Abbas UniversityAin TayaAlgeria

Personalised recommendations