Skip to main content

Effective Design for Sobol Indices Estimation Based on Polynomial Chaos Expansions

  • Conference paper
  • First Online:
Book cover Conformal and Probabilistic Prediction with Applications (COPA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9653))

Included in the following conference series:

Abstract

Sobol’ indices are a common metric of dependency in sensitivity analysis. It is used as a measure of confidence of input variables influence on the output of the analyzed mathematical model. We consider a problem of selection of experimental design points for Sobol’ indices estimation. Based on the concept of D-optimality, we propose a method for constructing an adaptive design of experiments, effective for the calculation of Sobol’ indices from Polynomial Chaos Expansions. We provide a set of applications that demonstrate the efficiency of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beven, K.J.: Rainfall-Runoff Modelling-The Primer, p. 360. Wiley, Chichester (2000)

    Google Scholar 

  2. Dayan, P., Abbott, L.F.: Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  3. Grihon, S., Burnaev, E.V., Belyaev, M.G., Prikhodko, P.V.: Surrogate modeling of stability constraints for optimization of composite structures. In: Koziel, S., Leifsson, L. (eds.) Surrogate-Based Modeling and Optimization. Engineering Applications, pp. 359–391. Springer, New York (2013)

    Chapter  Google Scholar 

  4. Saltelli, A., Chan, K., Scott, M.: Sensitivity Analysis. Probability and Statistics Series. Wiley, West Sussex (2000)

    MATH  Google Scholar 

  5. Morris, M.D.: Factorial sampling plans for preliminary computational experiments. Technometrics 33, 161–174 (1991)

    Article  Google Scholar 

  6. Iooss, B., Lemaitre, P.: A review on global sensitivity analysis methods. In: Meloni, C., Dellino, G. (eds.) Uncertainty management in Simulation-Optimization of Complex Systems: Algorithms and Applications, pp. 101–122. Springer, New York (2010)

    Google Scholar 

  7. Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., et al.: Global Sensitivity Analysis - The Primer. Wiley, Chichester (2008)

    MATH  Google Scholar 

  8. Yang, J.: Convergence and uncertainty analyses in Monte-Carlo based sensitivity analysis. Environ. Modell. Softw. 26, 444–457 (2011)

    Article  Google Scholar 

  9. Sudret, B.: Polynomial chaos expansions and stochastic finite element methods. In: Phoon, K.K., Ching, J. (eds.) Risk and Reliability in Geotechnical Engineering, Chap. 6, pp. 265–300. Taylor and Francis, London (2015)

    Google Scholar 

  10. Sobol’, I.M.: Sensitivity estimates for nonlinear mathematical models. Math. Model. Comp. Exp. 1, 407–414 (1993)

    MathSciNet  MATH  Google Scholar 

  11. Saltelli, A., Annoni, P.: How to avoid a perfunctory sensitivity analysis. Environ. Modell. Softw. 25, 1508–1517 (2010)

    Article  Google Scholar 

  12. Cukier, R.I., Levine, H.B., Shuler, K.E.: Nonlinear sensitivity analysis of multiparameter model systems. J. Comput. Phy. 26(1), 1–42 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sobol, I.: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55(1–3), 271–280 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Stone, M.: Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc., Ser. B 36, 111–147 (1974)

    MathSciNet  MATH  Google Scholar 

  15. Marrel, A., Iooss, B., Laurent, B., Roustant, O.: Calculations of the Sobol indices for the Gaussian process metamodel. Reliab. Eng. Syst. Saf. 94, 742–751 (2009)

    Article  Google Scholar 

  16. Burnaev, E., Zaitsev, A., Spokoiny, V.: Properties of the posterior distribution of a regression model based on Gaussian random fields. Autom. Remote Control 74(10), 1645–1655 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Burnaev, E., Zaytsev, A., Spokoiny, V.: The Bernstein-von Mises theorem for regression based on Gaussian processes. Russ. Math. Surv. 68(5), 954–956 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Belyaev, M., Burnaev, E., Kapushev, Y.: Gaussian process regression for structured data sets. In: Gammerman, A., Vovk, V., Papadopoulos, H. (eds.) SLDS 2015. LNCS, vol. 9047, pp. 106–115. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  19. Dubreuila, S., Berveillerc, M., Petitjeanb, F., Salauna, M.: Construction of bootstrap confidence intervals on sensitivity indices computed by polynomial chaos expansion. Reliab. Eng. Syst. Saf. 121, 263–275 (2014)

    Article  Google Scholar 

  20. McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21, 239–245 (1979)

    MathSciNet  MATH  Google Scholar 

  21. Ghiocel, D., Ghanem, R.: Stochastic finite element analysis of seismic soil-structure interaction. J. Eng. Mech. 128, 66–77 (2002)

    Article  Google Scholar 

  22. Sudret, B.: Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Sys. Safety 93, 964–979 (2008)

    Article  Google Scholar 

  23. Blatman, G., Sudret, B.: Efficient computation of global sensitivity indices using sparse polynomial chaos expansions. Reliab. Eng. Sys. Saf. 95, 1216–1229 (2010)

    Article  Google Scholar 

  24. Blatman, G., Sudret, B.: An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis. Prob. Eng. Mech. 25, 183–197 (2010b)

    Article  Google Scholar 

  25. Berveiller, M., Sudret, B., Lemaire, M.: Stochastic finite elements: a non intrusive approach by regression. Eur. J. Comput. Mech. 15(1–3), 81–92 (2006)

    MATH  Google Scholar 

  26. Hastie, T., Tibshirani, R., Friedman, J.: Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer-Verlag, New York (2009)

    Book  MATH  Google Scholar 

  27. Spokoiny, V., Dickhaus, T.: Basics of Modern Parametric Statistics. Springer, Berlin (2014)

    MATH  Google Scholar 

  28. Oehlert, G.W.: A note on the delta method. Am. Stat. 46, 27–29 (1992)

    MathSciNet  Google Scholar 

  29. Chaloner, K., Verdinelli, I.: Bayesian experimental design: a review. Stat. Sci. 10, 273–304 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pronzato, L.: One-step ahead adaptive D-optimal design on a finite design space is asymptotically optimal. Metrika 71(2), 219–238 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Miller, A., Nguyen, N.K.: Algorithm AS 295: a fedorov exchange algorithm for D-optimal design. J. R. Stat. Soc. Ser. C (Appl. Stat. 43(4), 669–677 (1994)

    Google Scholar 

  32. Welch, B.L.: The generalization of “Student’s” problem when several different population variances are involved. Biometrika 34(12), 2835 (1947)

    MathSciNet  MATH  Google Scholar 

  33. Burnaev, E., Panin, I.: Adaptive Design of Experiments for Sobol Indices Estimation Based on Quadratic Metamodel. In: Gammerman, A., Vovk, V., Papadopoulos, H. (eds.) SLDS 2015. LNCS, vol. 9047, pp. 86–95. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  34. Burnaev, E., Panov, M.: Adaptive design of experiments based on gaussian processes. In: Gammerman, A., Vovk, V., Papadopoulos, H. (eds.) SLDS 2015. LNCS, vol. 9047, pp. 116–125. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  35. Forrester, A., Sobester, A., Keane, A.: Engineering Design via Surrogate Modelling: A Practical Guide. Wiley, Chichester (2008)

    Book  Google Scholar 

  36. Lee, S., Kwak, B.: Response surface augmented moment method for efficient reliability analysis. Struct. Safe. 28, 261–272 (2006)

    Article  Google Scholar 

  37. Konakli, K., Sudret, B.: Uncertainty quantification in high-dimensional spaces with low-rank tensor approximations. In: Proceedings of the 1st ECCOMAS Thematic Conference on Uncertainty Quantification in Computational Sciences and Engineering, Crete Island, Greece (2015)

    Google Scholar 

  38. Li, C., Der Kiureghian, A.: Optimal discretization of random fields. J. Eng. Mech. 119(6), 1136–1154 (1993)

    Article  Google Scholar 

Download references

Acknowledgments

The research was conducted in IITP RAS and supported solely by the Russian Science Foundation grant (project 14-50-00150).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Panin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Burnaev, E., Panin, I., Sudret, B. (2016). Effective Design for Sobol Indices Estimation Based on Polynomial Chaos Expansions. In: Gammerman, A., Luo, Z., Vega, J., Vovk, V. (eds) Conformal and Probabilistic Prediction with Applications. COPA 2016. Lecture Notes in Computer Science(), vol 9653. Springer, Cham. https://doi.org/10.1007/978-3-319-33395-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33395-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33394-6

  • Online ISBN: 978-3-319-33395-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics