Skip to main content

Implementation of PID, Bang–Bang and Backstepping Controllers on 3D Printed Ambidextrous Robot Hand

  • Chapter
  • First Online:
Intelligent Systems and Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 650))

  • 1054 Accesses

Abstract

Robot hands have attracted increasing research interest in recent years due to their high demand in industry and wide scope in number of applications. Almost all researches done on the robot hands were aimed at improving mechanical design, clever grasping at different angles, lifting and sensing of different objects. In this chapter, we presented the detail classification of control systems and reviewed the related work that has been done in the past. In particular, our focus was on control algorithms implemented on pneumatic systems using PID controller, Bang–bang controller and Backstepping controller. These controllers were tested on our uniquely designed ambidextrous robotic hand structure and results were compared to find the best controller to drive such devices. The five finger ambidextrous robot hand offers total of \(13^\circ \) of freedom (DOFs) and it can bend its fingers in both ways left and right offering full ambidextrous functionality by using only 18 pneumatic artificial muscles (PAMs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrikopoulos, G., Nikolakopoulos, G., Arvanitakis, I., Manesis, S.: Piecewise affine modeling and constrained optimal control for a pneumatic artificial muscle. IEEE Trans. Ind. Electron. 61(2), 904–916 (2014)

    Article  Google Scholar 

  2. Ortega, R., Spong, M.: Adaptive control. Elsevier, New York (1989)

    Google Scholar 

  3. Lilly, J.H.: Adaptive tracking for pneumatic muscle actuators in bicep and tricep configurations. IEEE Trans. Neural Syst. Rehabil. 11(3), 333–339 (2003)

    Article  Google Scholar 

  4. Chan, S.W., Lilly, J.H., Repperger, D.W., Berlin, J.E.: Fuzzy PD\(+\)I learning control for a pneumatic muscle. In: Proceedings of the 12th IEEE International Conference on FUZZ System, pp. 278–283 (2003)

    Google Scholar 

  5. Albus, J.S., Barbera, A.J., Nagel, R.N.: Theory and Practice of Hierarchcal control. (1980). www.robotictechnologyinc.com

  6. Li, H., Kawashima, K., Tadano, K., Ganguly, S., Nakano, S.: Achieving haptic perception in forceps manipulator using pneumatic artificial muscle. IEEE/ASME Trans. Mechatron. 18(1), 74–85 (2013)

    Article  Google Scholar 

  7. Gupta, M.M.: Intelligent Control System. IEEE, New York (1996)

    Google Scholar 

  8. Omidvar, O., Elliott, D.L.: Neural Systems for Control. Elsevier (1997)

    Google Scholar 

  9. Kosaki, T., Sano, M.: Control of pneumatic artificial muscles with the just-in-time method based on a client-server architecture via the Internet. In: Proceedings of the IEEE International Conference on Automation Science and Engineering (CASE), pp. 980–985, Seoul, South Korea (2012)

    Google Scholar 

  10. Gelman, A., et al.: Bayesian Data Analysis. CRC press, Boca Raton (2013)

    Google Scholar 

  11. Ariga, Y., Pham, H.T.T., Uemura, M., Hirai, H., Miyazaki, F.: Novel equilibrium-point control of agonist-antagonist system with pneumatic artificial muscles. In: Proceedings of the IEEE ICRA, pp. 1470–1475. Saint Paul, MN, USA (2012)

    Google Scholar 

  12. Ross, T.J.: Fuzzy Logic with Engineering Applications. Wiley, New York (2009)

    Google Scholar 

  13. Domingos, P.: A few useful things to know about machine learning. Commun. ACM 55(10), 78–87 (2012)

    Article  Google Scholar 

  14. De Jong, K.: Evolutionary computation: a unified approach. In: Proceedings of the 2014 Conference Companion on Genetic and Evolutionary Computation Companion, pp. 281–296. ACM (2014)

    Google Scholar 

  15. Grefenstette, J.J.: Proceedings of the First International Conference on Genetic Algorithms and their Applications. Psychology Press (2014)

    Google Scholar 

  16. Reynolds, D.B., Repperger, D.W., Phillips, C.A., Bandry, G.: Modeling the dynamic characteristics of pneumatic muscle. Ann. Biomed. Eng 31(3), 310–317 (2003)

    Article  Google Scholar 

  17. Lewis, F.L., Vrabie, D., Syrmos, V.L.: Optimal Control. Wiley, New York (2012)

    Google Scholar 

  18. Åström, K.J.: Introduction to Stochastic Control Theory. Courier Dover Publications, USA (2012)

    Google Scholar 

  19. Repperger, D.W., Johnson, K.R., Phillips, C.A.: A VSC position tracking system involving a large scale pneumatic muscle actuator. In: Proceedings of the 37th IEEE Conference Decision Control, vol. 4, pp. 4302–4307 (1998)

    Google Scholar 

  20. Choi, T.-Y., Lee, J.-J.: Control of manipulator using pneumatic muscles for enhanced safety. IEEE Trans. Ind. Electron 57(8), 2815–2825 (2010)

    Article  MathSciNet  Google Scholar 

  21. Navarro-Alarcon, D., Li, P., Yip, H.M.: Energy shaping control for robot manipulators in explicit force regulation tasks with elastic environments. In: Proceedings of the IEEE/RSJ International Conference Intelligent Robots and Systems (IROS), pp. 4222–4228 (2011)

    Google Scholar 

  22. Repperger, D.W., Phillips, C.A., Krier, M.: Controller design involvng gain scheduling for a large scale pneumatic muscle actuator. IEEE Int. Conf. Control Appl. 1, 285–290 (1999)

    Google Scholar 

  23. Harald, A., Schindele, D.: Sliding-mode control of a high-speed linear axis driven by pneumatic muscle actuators. IEEE Trans. Ind. Electron. 55(11), 3855–3864 (2008)

    Article  Google Scholar 

  24. Van Damme, M., et al.: Proxy-based sliding mode control of a planar pneumatic manipulator. Int. J. Robot. Res. 28(2), 266–284 (2009)

    Article  Google Scholar 

  25. Chang, X., Lilly, J.H.: Fuzzy control for pneumatic muscle tracking via evolutionary tuning. Intell. Autom. Soft Comput. 9(4), 227–244 (2003)

    Article  Google Scholar 

  26. Shadow Dexterous Hand E1M3R, E1M3L. http://www.shadowrobot.com/products/dexterous-hand/

  27. P. Srl.: The EH1 Milano Hand (2010). http://www.prensilia.com/index.php?q=en/node/41

  28. S. R. C. L.: Shadow Dexterous Hand E1P1R, E1P1L (2013). http://www.shadowrobot.com/products/dexterous-hand/

  29. Tsujiuchi, N., et al.: Development of pneumatic robot hand and construction of master–slave system. J. Syst. Design Dyn. 2(6), 1306–1315 (2008)

    Article  Google Scholar 

  30. Yoshikawa, T., Koeda, M., Fujimoto, H.: Shape recognition and optimal grasping of unknown objects by soft-fingered robotic hands with camera. Exp. Robot. Springer Tracts Adv. Robot. 54, 537–546 (2009)

    Article  Google Scholar 

  31. I. W. Laboratory: High-speed robot hand (2009). http://www.k2.t.u-tokyo.ac.jp/fusion/HighspeedHand/

  32. Gunji, D., et al.: Grasping force control of multi-fingered robot hand based on slip detection using tactile sensor. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 2605–2610 (2008)

    Google Scholar 

  33. Chou, C.-P., Hannaford, B.: Measurement and modelling of McKibben pneumatic artificial muscles. IEEE Trans. Robot. Autom. 12(1), 90–102 (1996)

    Article  Google Scholar 

  34. Ang, K.H., Chong, G., Yun, L.: PID control system analysis, design, and technology. IEEE Trans. Control Syst. Technol. 13(4), 559–576 (2005)

    Article  Google Scholar 

  35. Hassan, M.Y., Kothapalli, G.: Comparison between neural network based PI and PID control-lers. In: Proceedings of thre International Conference on Systems Signals and Devices (SSD), vol. 7, pp. 1–6 (2010)

    Google Scholar 

  36. Kristiansson, B., Lennartson, B.: Robust tuning of PI and PID controllers. IEEE Control Syst. 26(1), 55–69 (2006)

    Article  MathSciNet  Google Scholar 

  37. Akyürek, E., Kalganova, T., Mukhtar, M., Paramonov, L., Steele, L., Simko, M., Kavanagh, L., Nimmo, A., Huynh, A., Stelarc, T.: Design and development of low cost 3D printed ambidextrous robotic hand driven by pneumatic muscles. Int. J. Eng. Tech. Res. (IJETR) 2(10), 179–188 (2014)

    Google Scholar 

  38. Nagase, J.Y., Saga, N., Satoh, T., Suzumori, K.: Development and control of a multifingered robotic hand using a pneumatic tendon-driven actuator. J. Intell. Mater. Syst. Struct. 23(3), 345–352 (2011)

    Article  Google Scholar 

  39. Kawasaki, H., Komatsu, T., Uchiyama, K.: Dexterous anthropomorphic robot hand with dis-tributed tactile sensor: gifu hand II. IEEE/ASME Trans. Mechatron. 7(3), 296–303 (2002)

    Article  Google Scholar 

  40. Namiki, A., Imai, Y., Ishikawa, M., Kaneko, M.: Development of a high-speed multifingered hand system and its application to catching. In: Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (2003)

    Google Scholar 

  41. Dilibal, S., Tabanli, R.M., Dikicioglu, A.: Development of shape memory actuated ITU Robot Hand and its mine clearance compatibility. J. Mater. Process. Technol. 155(156), 1390–1394 (2004)

    Article  Google Scholar 

  42. Yamano, I., Maeno, T.: Five-fingered robot hand using ultrasonic motors and elastic ele-ments. In: Proceedings of the 2005 International Conference on Robotics and Automation, pp. 2673–2678 (2005)

    Google Scholar 

  43. Zollo, L., Roccella, S., Guglielmelli, E., Carrozza, M.C., Dario, P.: Biomechatronic design and control of an anthropomorphic artificial hand for prosthetic and robotic applications. IEEE/ASME Trans. Mechatron. 12(4), 418–429 (2007)

    Article  Google Scholar 

  44. Yoshikawa, T.: Multifingered robot hands: control for grasping and manipulation. Ann. Re-v. Control. 34(2), 199–208 (2010)

    Article  Google Scholar 

  45. Nagase, J.Y., Saga, N., Satoh, T., Suzumori, K.: Development and control of a multifingered robotic hand using a pneumatic tendon-driven actuator. J. Intell. Mater. Syst. Struct. 23(3), 345–352 (2011)

    Article  Google Scholar 

  46. Roa, M.A., Argus, M.J., Leidner, D., Borst, C., Hirzinger, G.: Power grasp planning for anthro-pomorphic robot hands. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 563–569 (2012)

    Google Scholar 

  47. Grebenstein, M., et al.: The hand of the DLR hand arm system: designed for interaction. Int. J. Robot. Res. 31(13), 1531–1555 (2012)

    Article  Google Scholar 

  48. Deshpande, A.D., et al.: Mechanisms of the anatomically correct testbed(ACT) hand. IEEE/ASME Trans. Mechatron. 18, 238–250 (2013)

    Article  Google Scholar 

  49. Nuchkrua, T., Leephakpreeda, T., Mekarporn, T.: Development of robot hand with pneumatic artificial muscle for rehabilitation application. In: Proceedings of the IEEE 7th International Conference on Nano/Molecular Medicine and Engineering (NANOMED), pp. 55–58 (2013)

    Google Scholar 

  50. Kakoty, N.M., Hazarika, S.M.: Local hand control for Tezpur University bionic hand grasp-ing, Air’13. In: Proceedings of Conference on Advances in Robotics, pp 1–7 (2013)

    Google Scholar 

  51. Palli, G., et al.: The DEXMART hand: mechatronic design and experimental evaluation of synergy-based controlfor human-like grasping. Int. J. Robot. Res. 33(5), 799–824 (2014)

    Article  Google Scholar 

  52. Mukhtar, M., Akyürek, E., Kalganova, T., Lesne, N.: Control of 3D printed ambidextrous robot hand actuated by pneumatic artificial muscles. In: Proceedings of the IEEE Sponsored SAI Intelligent Systems Conference, November 10–11, London (2015)

    Google Scholar 

  53. Silva, C., Trélat, E.: Smooth regularization of bang-bang optimal control problems. IEEE Trans. Autom. Control 55(11), 2488–2499 (2010)

    Article  MathSciNet  Google Scholar 

  54. Bonnard, B., Caillau, J.B., Trélat, E.: Second order optimality conditions in the smooth case and applications in optimal control. ESAIM: Control Optim. Calc. Var. 13(2), 207–236 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  55. Nagi, F., Perumal, L., Nagi, J.: A new integrated fuzzy bang-bang relay control system. Mechatronics 19(5), 748–760 (2009)

    Article  Google Scholar 

  56. Nagi, F., Zulkarnain, A.T., Nagi, J.: Tuning fuzzy bang-bang relay controller for satellite attitude control system. Aerosp. Sci. Technol. 26(1), 76–86 (2013)

    Article  Google Scholar 

  57. Ham, R.V., Verrelst, B., Daerden, F., Lefeber, D.: Pressure control with on-off valves of pleated pneumatic artificial muscles in a modular one-dimensional rotational joint. In: Proceedings of the International Conference on Humanoid Robots, pp. 761–768 (2003)

    Google Scholar 

  58. Cain, S.M., Gordon, K.E., Ferris, D.P.: Locomotor adaptation to a powered ankle-foot orthosis depends on control method. Journal of NeuroEngineering and Rehabilitation. 4, 1–13 (2007)

    Article  Google Scholar 

  59. Shin, D., Sardellitti, I., Khatib, O.: A hybrid actuation approach for human-friendly robot design. IEEE Int. Conf. Robot. Autom. ICRA 2008, 1747–1752 (2008)

    Google Scholar 

  60. Zinn, M., Khatib, O., Roth, B., Salisbury, J.K.: Towards a human centered intrinsically-safe robotic manipulator. In: Proceedings of the IARP/IEEERAS Joint Workshop Toulouse, France (2002)

    Google Scholar 

  61. Zhang, J.-F., Yang, C.-J., Chen, Y., Zhang, Y., Dong, Y.-M.: Modeling and control of a curved pneumatic muscle actuator for wearable elbow exoskeleton. Mechatronics 18(8), 448–457 (2008)

    Article  Google Scholar 

  62. Xu, Z., Kumar, V., Todorov, E.: A low-cost and modular, 20-DOF anthropomorphic robotic hand: design, actuation and modeling. In: Proceedings of the 13th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pp. 378–375 (2013)

    Google Scholar 

  63. Vanderborght, B., et al.: Torque and compliance control of the pneumatic artificial muscles in the biped "Lucy". In: Proceedings of the 2006 IEEE International Conference on Robotics and Automation, pp. 842-847 (2006)

    Google Scholar 

  64. Vanderborght, B., Verrelst, B., Ham, R.V., Vermeulen, J., Lefeber, D.: Dynamic Control of a Bipedal Walking Robot actuated with Pneumatic Artificial Muscles. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp. 1–6 (2005)

    Google Scholar 

  65. Vanderborght, B., Verrelst, B., Ham, R.V., Damme, M.V., Lefeber, D.: A pneumatic biped: experimental walking results and compliance adaptation experiments. In: Proceedings of the 5th IEEE-RAS International Conference on Humanoid Robots, pp. 44–49 (2005)

    Google Scholar 

  66. Mohamed, S., Xavier, B., Daniel, T.: Systematic control of an electropneumatic system: integrator backstepping and sliding mode control. IEEE Trans. Control Syst. Technol. 14(5), 2–3 (2006)

    Article  Google Scholar 

  67. Carbonell, P., Jiang, Z.P., Repperger, D.W.: Nonlinear control of a pneumatic muscle actuator: backstepping vs. sliding-mode. In: Proceedings of the IEEE International Conference on Control Applications(CCA ’01), pp. 167–172 (2001)

    Google Scholar 

  68. Carbonell, P., Jiang, Z.P., Repperger, D.W.: A fuzzy backstepping controller for a pneumatic muscle actuator system. In: Proceedings of the IEEE International Symposium on Intelligent Control, (ISIC ’01), pp. 353–358 (2001)

    Google Scholar 

  69. Soltanpour, M.R., Fateh, M.M.: Sliding mode robust control of robot manipulator in the task space by support of feedback linearization and backstepping control. World Appl. Sci. J. 6(1), 70–76 (2009)

    Google Scholar 

  70. Su, C.-Y., Stepanenko, Y.: Backstepping-based hybrid adaptive control of robot manipulators incorporating actuator dynamics. Int. J. Adapt. Control Signal Process. 11(4), 141–153 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  71. Aschemann, H., Schindele, D.: Nonlinear model-based control of a parallel robot driven by pneumatic muscle actuators. In: Aschemann, H. (ed.) New approaches in Automation and Robotics. I-Tech Education and Publishing, Vienna (2008)

    Google Scholar 

  72. Qin, L., Liu, F., Liang, L.: The application of adaptive backstepping sliding mode for hybrid humanoid robot arm trajectory tracking control. Adv. Mech. Eng. 6(307985), 1–9 (2014)

    Google Scholar 

  73. Aschemann, H., Schindele, D.: Comparison of model-based approaches to the compensation of hysteresis in the force characteristic of pneumatic muscles. IEEE Trans. Ind. Electron. 61(7), 3620–3629 (2014)

    Article  Google Scholar 

  74. Nganya-Kouya, D., Saad, M., Lamarche, L.: Backstepping adaptive hybrid force/position control for robotic manipulators. In: Proceedings of the 2002 American Control Conference, vol. 6,pp. 4595–4600 (2014)

    Google Scholar 

  75. Lotfazar, A., Eghtesad, M., Mohseni, M.: Integrator backstepping control of a 5 DOF robot manipulator with cascaded dynamics. IJE Trans. B: Appl. 16(4), 373–383 (2003)

    MATH  Google Scholar 

  76. Wen, S.-H., Mao, B.: Hybrid force and position control of robotic manipulators using passivity backstepping neural networks. In: Advances in Neural Networks – ISNN 2007, vol. 4491, pp. 863–870 (2007)

    Google Scholar 

  77. Soltanpour, M.R., Fateh, M.M.: Sliding mode robust control of robot manipulator in the task space by support of feedback linearization and backstepping control. World Appl. Sci. J. 6(1), 70–76 (2009)

    Google Scholar 

  78. Liu, X., Liadis, A.: Fuzzy adaptive backstepping control of a two degree of freedom parallel robot. Int. Robot. Appl. 7506, 601–610 (2012)

    Google Scholar 

  79. Akyürek, E., Kalganova, T., Mukhtar, M., Paramonov, L., Steele, L., Simko, M., Kavanagh, L., Nimmo, A., Huynh, A., Stelarc, T: A novel design process of low cost 3D printed ambidextrous finger designed for an ambidextrous robotic hand. WSEAS Transactions on Circuits and Systems, ISSN / E-ISSN: 1109-2734 / 2224-266X, vol. 14, Art. #55, pp. 475–488 (2015)

    Google Scholar 

Download references

Acknowledgments

The authors would like to cordially thank Anthony Huynh, Luke Steele, Michal Simko, Luke Kavanagh and Alisdair Nimmo for their contributions in design of the mechanical structure of a hand, and without whom the research introduced in this paper would not have been possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mashood Mukhtar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mukhtar, M., Akyürek, E., Kalganova, T., Lesne, N. (2016). Implementation of PID, Bang–Bang and Backstepping Controllers on 3D Printed Ambidextrous Robot Hand. In: Bi, Y., Kapoor, S., Bhatia, R. (eds) Intelligent Systems and Applications. Studies in Computational Intelligence, vol 650. Springer, Cham. https://doi.org/10.1007/978-3-319-33386-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33386-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33384-7

  • Online ISBN: 978-3-319-33386-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics