Skip to main content

Diagnosis System for Predicting Bladder Cancer Recurrence Using Association Rules and Decision Trees

  • Chapter
  • First Online:
Book cover Intelligent Systems and Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 650))

  • 858 Accesses

Abstract

In this work we present two methods based on Association Rules (ARs) for the prediction of bladder cancer recurrence. Our objective is to provide a system which is on one hand comprehensible and on the other hand with a high sensitivity. Since data are not equitably distributed among the classes and since errors costs are asymmetric, we propose to handle separately the cases of recurrence and those of no-recurrence. ARs are generated from each training set using an associative classification approach. The rules’ uncertainty is represented by a confidence degree. Several symptoms of low intensity can be complementary and mutually reinforcing. This phenomenon is taken into account thanks to aggregate functions which strengthen the confidence degrees of the fired rules. The first proposed classification method uses these ARs to predict the bladder cancer recurrence. The second one combines ARs and decision tree: the original base of ARs is enriched by the rules generated from a decision tree. Experimental results are very satisfactory, at least with the AR’s method. The sensibility rates are improved in comparison with some other approaches. In addition, interesting extracted knowledge was provided to oncologists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Sensitivity: the proportion of positive class instances that are correctly classified (called True Positive rate or TP rate).

  2. 2.

    Rabta: University Hospital in Tunis, Tunisia.

  3. 3.

    RTU: Trans-Urethral Resection of bladder cancer, it is an operation which consists in removing one or more tumors on the level of the bladder.

  4. 4.

    BCG (Bacillus Calmette-Guerin): the BCG therapy is a non-specific treatment of localized, non-invasive cancer of the bladder. BCG solution contains alive but little virulent bacteria which have the effect of stimulating the immune system to destroy cancer cells in the bladder.

  5. 5.

    Cystectomy: examination of the interior of the bladder using an optical system.

  6. 6.

    http://www.cs.waikato.ac.nz/ml/index.html.

  7. 7.

    CBA: Classification Based on Association.

  8. 8.

    CMAR: Classification based on Multiple Association Rules.

  9. 9.

    Heterogeneous rules: rules that do not have the same attributes in their premises.

  10. 10.

    TP: True Positive rate.

  11. 11.

    TN: True Negative rate.

  12. 12.

    FP: False Positive rate.

  13. 13.

    FN: False Negative rate.

References

  1. Greenlee, R.T., Hill-Harmon, M.B., Murray, T., Thun, M.: Cancer statistics, 2001. CA Cancer J. Clin. 51, 15–36 (2001)

    Article  Google Scholar 

  2. Millan-Rodriguez, F., Chechile-Tonolio, G., Salvador-Bayarri, J., Palou, J., Vicente Rodriguez, J.: Multivariate analysis of the prognostic factors of primary superficial bladder cancer (2000). J. Urology. 163, 73–78

    Google Scholar 

  3. Maumus, S., Napoli, A., Szathmary, L., Visvikis-Siest, S.: Fouille de données biomédicales complexes : extraction de règles et de profils génétiques dans le cadre de l’étude du syndrome métabolique. In: Perrire, G., Gunoche, A., Gourgeon, C. (eds.) Journées Ouvertes Biologie Informatique Mathématiques JOBIM 2005, pp. 169–173. Lyon, France (2005)

    Google Scholar 

  4. Ming-Yih, L., Chi-Shih, Y.: Entropy-based feature extraction and decision tree introduction for breast cancer diagnostic with standardized thermography images. Comput. Methods Programs Biomed. 100, 269–282 (2010)

    Article  Google Scholar 

  5. Bouchon-Meunier, B., Marsala, C.: Fuzzy decision trees and databases. In: Andreasen, T., Christiansen, H., Legind-Larsen, L. (eds.) Flexible Query Answering Systems, pp. 277–288. Kluwer Academic, Berlin (1997)

    Chapter  Google Scholar 

  6. Bersini,H., Bontempi, G., Birattari, M.: Is readability compatible with accuracy? From neuro-fuzzy to lazy learning. In: Brauer, W. (eds.) Fuzzy-Neuro Systems’98. Computational Intelligence: Proceedings of the 5th International Workshop on Fuzzy-Neuro Systems, pp. 10–25. IOS Press (1998)

    Google Scholar 

  7. Duch, W., Setiono, R., Zurada, J.M.: Computational intelligence methods for rule-based data understanding. IEEE (2004). doi:10.1109/JPROC.2004.826605

    Google Scholar 

  8. Soua, B., Borgi, A., Tagina, M.: An ensemble method for fuzzy rule-based classification systems. Knowl. Inf. Syst. 36, 385–410 (2013)

    Article  Google Scholar 

  9. Haton, J.-P., Bouzid, N., Charpillet, F., Haton, M., Lasri, H., Marquis, P., Mondot, T., Napoli, A.: Le raisonnement en intelligence artificielle. InterEditions, Paris (1991)

    Google Scholar 

  10. Ounallah, S.: Fouille de données pour l’aide au diagnostic médical. Master Report, Institut Supérieur d’Informatique, Université de Tunis El Manar (December 2014)

    Google Scholar 

  11. Quinlan, J.R.: C4.5 : Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  12. Agrawal, R., Strikant, R.: Fast algorithmes for mining association rules. In: Proceedings of the 20th International Conference on Very Large Data Bases VLDB ’94, pp. 487–499. Morgan Kaufmann (1994)

    Google Scholar 

  13. Bing, L., Wynne, H., Yiming, M.: Integrating classification and association rule mining. In: Proceeding of the 4th International Conference on Knowledge Discovery and Data Mining KDD’98, pp. 80–86. AAAI Press (1998)

    Google Scholar 

  14. Wenmin, L., Jiawei, H., Jian, P.: CMAR: accurate and efficient classification based on multiple class-association rules. In: Proceedings of the 2001 IEEE International Conference on Data Mining ICDM ’01, pp. 369–376. IEEE Computer Society (2001)

    Google Scholar 

  15. Exarchos, T.P., Papaloukas, C., Fotiadis, D.I., Michalis, L.K.: An association rule mining-based methodology for automated detection of ischemic EGC beats. IEEE Trans. Biomed. Eng. 53, 1531–1540 (2006)

    Article  Google Scholar 

  16. Dwarakanath, B., Ramesh, K.: Classe association rules based feature selection for diagnosis of Dravet syndrome. Int. J. Sci. Res. 3, 1670–1673 (2014)

    Google Scholar 

  17. Sellami, A., Boudawara, T.S., Hsairi, M., Jlidi, R., Achour, N.: Registre du cancer du sud Tunisien : incidence des cancers dans le gouvernorat de Sfax 2000-2002. In: Data and Statistics. World Health Organisation (2007) Available via DIALOG. http://www.emro.who.int/. Accessed 03 Jul 2014

  18. Pasin, E., Josephson, D.Y., Mitra, A.P., Cote, R.J., Stein, J.P.: Superficial bladder cancer: an update on etiology, molecular development, classification, and natural history. Urology 10, 31–43 (2008)

    Google Scholar 

  19. Remco, R.B., Eibe, F., Mark, H., Richard, K., Peter, R., Alex, S., David, S.: WEKA Manual for Version 3-6-10. University of Waikato, New Zealand (2013)

    Google Scholar 

  20. Mustafa Nofal, A.A.D., Bani-Ahmad, S.: Classification based on association-rule mining techniques: a general survey and empirical comparative evaluation. Ubiquitous Comput. Commun. J. 5, 9–17 (2010)

    Google Scholar 

  21. Motro, A.: Imprecision and uncertainty in databade systems. In: Bosc, P., Kacprzyk, J. (eds.) Fuzziness in Database Managment Systems, pp. 3–22. Physica-Verlag HD, Heidelberg (1995)

    Chapter  Google Scholar 

  22. Bonnal, P., Gourc, D., Locaste, G.: Where do we stand with fuzzy project scheduling? J. Constr. Eng. Manag. 130, 114–123 (2004)

    Article  Google Scholar 

  23. Lin-li, Z., Xing-kui, H., Guo-hong, D.: Research on uncertain knowledge representation and processing in the expert system. In: 2011 Fourth International Symposium on Knowledge Acquisition and Modeling (KAM), pp. 277–281. IEEE (2011)

    Google Scholar 

  24. Dubois, D., Prade, H.: A review of fuzzy set aggregation connectives. Inf. Sci. 36, 65–121 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  25. Weber, S.: A general concept of fuzzy connectives, negations and implications based on t-norms and t-conorms. Fuzzy Sets Syst. 11, 103–113 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  27. Quinlan, J.R.: Induction of Decision Trees. Mach. Learn. 1, 81–106 (1986)

    Google Scholar 

  28. Quinlan, J.R.: Generating production rules from decision trees. In: Proceedings of the 10th International Joint Conference on Artificial Intelligence IJCAI’87, pp. 304–307. Morgan Kaufmann (1987)

    Google Scholar 

  29. Xue-cheng, Y., Jun, W., Xiao-hang, Z., Ting, J.L.: Using decision tree and association rules to predict cross selling opportunities. In: Proceedings of the Seventh International Conference on Machine Learning and Cybernetics, pp. 1807–1811. IEEE (2008)

    Google Scholar 

  30. Kameswara R, N.K., Saradhi V, G.P.: A hybrid Algorithm for Epidemic Disease Prediction with Multi Dimensional Data. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 4, 1033–1037 (2014)

    Google Scholar 

  31. Rajendran, P., Madheswaran, M.: A hybrid algorithm for epidemic disease prediction with multi dimensional data. CoRR 2, 127–136 (2010)

    Google Scholar 

  32. Cohen, W.: Fast effective rule induction. In: Proceedings of the 12th International Conference on Machine Learning ICML’95, pp. 115–123. Morgan Kaufmann (1995)

    Google Scholar 

  33. Platt, J.C.: Fast training of support vector machines using sequential minimal optimization. In: Schlkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods: Support Vector Learning, pp. 185–208. MIT Press, Cambridge (1998)

    Google Scholar 

  34. John, G.H., Langley, P.: Estimating continuous distributions in Bayesian classifiers. In: Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence UAI’95, pp. 338–345. Morgan Kaufmann (1995)

    Google Scholar 

  35. Eibe, F., Ian, H.W.: Generating accurate rule sets without global optimization. In: Proceedings of the Fifteeth International Conference on Machine Learning ICML’98, pp. 144–151. Morgan Kaufmann (1998)

    Google Scholar 

  36. Brennan, P., Bogillot, O., Cordier, S., Greiser, E., Schill, W., Vineis, P., Gonzalo, L.A., Tzonou, A., Jenny, C.C., Ulrich, B.A., Jckel, K.H., Donato, F., Consol, S., Wahrendorf, J., Hours, M., T’Mannetje, A., Kogevinas, M., Boffetta, P.: Cigarette smoking and bladder cancer in men: a pooled analysis of 11 case-control studies. Int. J. Cancer 86, 289–294 (2000)

    Article  Google Scholar 

  37. Ben-Abdelkrim, S., Rammeh, S., Trabelsi, A., Ben-Yacoub-Abid, L., Ben-Sorba, N., Jadane, L., Mokni, M.: Reproductibilité des classifications OMS 1973 et OMS 2004 des tumeurs urothéliales papillaires de la vessie. Can. Urol. Assoc. J. (2012). doi:10.5489/cuaj.10078

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amel Borgi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Borgi, A., Ounallah, S., Stambouli, N., Selami, S., Elgaaied, A.B.A. (2016). Diagnosis System for Predicting Bladder Cancer Recurrence Using Association Rules and Decision Trees. In: Bi, Y., Kapoor, S., Bhatia, R. (eds) Intelligent Systems and Applications. Studies in Computational Intelligence, vol 650. Springer, Cham. https://doi.org/10.1007/978-3-319-33386-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33386-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33384-7

  • Online ISBN: 978-3-319-33386-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics