Skip to main content

Predicting Financial Time Series Data Using Hybrid Model

  • Chapter
  • First Online:
Intelligent Systems and Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 650))

Abstract

Prediction of financial time series is described as one of the most challenging tasks of time series prediction, due to its characteristics and their dynamic nature. Support vector regression (SVR), Support vector machine (SVM) and back propagation neural network (BPNN) are the most popular data mining techniques in prediction financial time series. In this paper a hybrid combination model is introduced to combine the three models and to be most beneficial of them all. Quantization factor is used in this paper for the first time to improve the single SVM and SVR prediction output. And also genetic algorithm (GA) used to determine the weights of the proposed model. FTSE100, S&P 500 and Nikkei 225 daily index closing prices are used to evaluate the proposed model performance. The proposed hybrid model numerical results shows the outperform result over all other single model, traditional simple average combiner and the traditional time series model Autoregressive (AR).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Box, G.E.P., Draper, Norman R.: Empirical Model-building and Response Surfaces. Wiley, New York (1987)

    Google Scholar 

  2. Yudong, Z., Lenan W.: Stock market prediction of S&P 500 via combination of improved bco approach and bp neural network. Expert Syst. Appl. 36(5), pp. 805–818 (2009)

    Google Scholar 

  3. Asadi, S., Hadavandi, E., Mehmanpazir, F., Nakhostin, M.M.: Hybridization of evolutionary Levenberg–Marquardt neural networks and data pre-processing for stock market prediction. Knowl. Based Syst. 35, 245–258 (2012)

    Google Scholar 

  4. Hadavandi, E., Ghanbari, A., Abbasian-Naghneh, S.: Developing an evolutionary neural network model for stock index forecasting. In: Advanced Intelligent Computing Theories and Applications, pp. 407–415. Springer, Heidelberg (2010)

    Google Scholar 

  5. Hill, T., O’Connor, M., Remus, W.: Neural network models for time series forecasts. Manag. Sci. 42(7), 1082–1092 (1996)

    Google Scholar 

  6. Armano, G., Marchesi, M., Murru, A.: A Hybrid Genetic-neural Architecture for Stock Indexes Forecasting. Inf. Sci. 170(1), 3–33 (2005)

    Google Scholar 

  7. Shen, W., Zhang, Y., Ma, X.: Stock return forecast with LS-SVM and particle swarm optimization. In: International Conference on Business Intelligence and Financial Engineering, 2009. BIFE’09, pp. 143–147. IEEE, New York (2009)

    Google Scholar 

  8. Kazem, A., Sharifi, E., Hussain, F.K., Saberi, M., Hussain, O.K.: Support vector regression with chaos-based firefly algorithm for stock market price forecasting. Appl. Soft Comput. 13(2), 947–958 (2013)

    Google Scholar 

  9. Pai, P.-F., Lin, K.-P., Lin, C.-S., Chang, P.-T.: Time series forecasting by a seasonal support vector regression model. Expert Syst. Appl. 37(6), 4261–4265 (2010)

    Article  Google Scholar 

  10. Al-Hnaity, B., Abbod, M.: A novel hybrid ensemble model to predict FTSE100 index by combining neural network and EEMD. In: 2015 European Control Conference (ECC), pp. 3021–3028. IEEE, New York (2015)

    Google Scholar 

  11. Armstrong, J.S.: Combining forecasts: the end of the beginning or the beginning of the end? int. j. forecast. 5(4), 585–588 (1989)

    Article  MathSciNet  Google Scholar 

  12. Timmermann, A.: Forecast combinations. Handbook of Economic Forecasting, vol. 1, pp. 135–196 (2006)

    Google Scholar 

  13. Xiang, C., Fu, W.M.: Predicting the stock market using multiple models. In: 9th International Conference on Control, Automation, Robotics and Vision, 2006. ICARCV’06, pp. 1–6. IEEE, New York (2006)

    Google Scholar 

  14. Gooijer, D., Jan, G., Hyndman, R.J.: 25 years of time series forecasting. Int. J. Forecast. 22(3), 443–473 (2006)

    Article  Google Scholar 

  15. LeBaron, B., Weigend, A.S.: A bootstrap evaluation of the effect of data splitting on financial time series. In: IEEE Transactions on Neural Networks, vol. 9(1), pp. 213–220. IEEE, New York (1998)

    Google Scholar 

  16. Balestrassi, P.P., Popova, E., de Paiva, A.P., Lima, J.W.M.: Design of experiments on neural network’s training for nonlinear time series forecasting. Neurocomputing 72(4), 1160–1178 (2009)

    Google Scholar 

  17. Diaz-Robles, L.A., Ortega, J.C., Fu, J.S., Reed, G.D., Chow, J.C., Watson, J.G., Moncada-Herrera, J.A.: A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: the case of Temuco, Chile. Atmos. Environ. 42(35) 8331–8340 (2008)

    Google Scholar 

  18. Kubat, Miroslav: Neural Networks: A Comprehensive Foundation by Simon Haykin Macmillan. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  19. Wang, J-J., Wang, J-Z., Zhang, Z-G., Guo, S.-P.: Stock index forecasting based on a hybrid model. Omega 40(6), 758–766 (2012)

    Google Scholar 

  20. Faruk, D.Ö.: A hybrid neural network and ARIMA model for water quality time series prediction. Eng. Appl. Artif. Intell. 23(4):586–594 (2010)

    Google Scholar 

  21. Cortes, C., Vapnik, V.: Support-vector Networks. In: Machine Learning, vol. 20(3), pp. 273–297. Springer, Heidelberg (1995)

    Google Scholar 

  22. Pontil, M., Verri, A.: Properties of support vector machines. In: Neural Computation, vol. 10(4), pp. 955–974. MIT Press, Cambridge (1998)

    Google Scholar 

  23. Osuna, E., Freund, R., Girosi, F.: Support Vector Machines: Training and Applications (1997)

    Google Scholar 

  24. Xia, Y., Liu, Y., Chen, Z.: Support Vector Regression for prediction of stock trend. In: 2013 6th International Conference on Information Management, Innovation Management and Industrial Engineering (ICIII), vol. 2, pp. 123–126. IEEE, New York (2013)

    Google Scholar 

  25. Cherkassky, V., Ma, Y.: Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw. 17(1), 113–126 (2004)

    Google Scholar 

  26. Tay, F.E.H., Cao, L.: Application of support vector machines in financial time series forecasting. Omega, 29(4), 309–317 (2001)

    Google Scholar 

  27. Cao, L.-J., Tay, F.E.H.: Support vector machine with adaptive parameters in financial time series forecasting. IEEE Trans. Neural Netw. 14(6), 1506–1518 (2003)

    Article  Google Scholar 

  28. Li, Y., Ma, W.: Applications of artificial neural networks in financial economics: a survey. In: 2010 International Symposium on Computational Intelligence and Design (ISCID), vol. 1, pp. 211–214. IEEE, New York (2010)

    Google Scholar 

  29. Theofilatos, K., Karathanasopoulos, A., Middleton, P., Georgopoulos, E., Likothanassis, S.: Modeling and trading FTSE100 index using a novel sliding window approach which combines adaptive differential evolution and support vector regression. In: Artificial Intelligence Applications and Innovations, pp. 486–496. Springer, Heidelberg (2013)

    Google Scholar 

  30. Hall, J.W.: Adaptive selection of US stocks with neural nets. In: Trading on the Edge: Neural, Genetic, and Fuzzy Systems for Chaotic Financial Markets, pp. 45–65. Wiley, New York (1994)

    Google Scholar 

  31. Abu-Mostafa, Y.S., Atiya, A.F.: Introduction to financial forecasting. In: Applied Intelligence, vol. 6(3), pp. 205–213. Springer, Heidelberg (1996)

    Google Scholar 

  32. Zhang, G.P.: Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50, 159–175 (2003)

    Article  MATH  Google Scholar 

  33. Chatfield, C.: What is the bestmethod of forecasting. J. Appl. Stat. 15(1), 19–38 (1988)

    Article  Google Scholar 

  34. Gupta, S., Wilton, P.C.: Combination of forecasts: an extension. Manag. Sci. 33(3), 356–372 (1987)

    Google Scholar 

  35. Christodoulos, C., Michalakelis, C., Varoutas, D.: Forecasting with limited data: combining ARIMA and diffusion models. Technol. Forecast. Soc. Change 77(4), 558–565 (2010)

    Article  Google Scholar 

  36. John, H.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT press, Cambridge (1992)

    Google Scholar 

  37. Goldberg, D.E.: Genetic Algorithm in Search, Optimization and Machine Learning, vol. 1(98), p. 9. Addison Wesley Publishing Company, Reading (1989)

    Google Scholar 

  38. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection, vol. 1. MIT press, Cambridge (1992)

    Google Scholar 

  39. Wu, B., Chang, C.-L.: Using genetic algorithms to parameters (d, r) estimation for threshold autoregressive models. Comput. Stat. Data Anal. 38(3), 315–330 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  40. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques: Concepts and Techniques. Elsevier (2011)

    Google Scholar 

  41. Fuller, W.A.: Introduction to Statistical Time Series, vol. 428. Wiley, New York (2009)

    Google Scholar 

  42. Armstrong, J.S.: Principles of Forecasting: A Handbook for Researchers and Practitioners. Science and Business Media, vol. 30. Springer, Heidelberg (2001)

    Google Scholar 

  43. Hyndman, R.J. Koehler, A.B.: Another Look at Measures of Forecast Accuracy. Int. J. Forecast. 22(4), 679–688 (2006)

    Google Scholar 

  44. Wang, J., Wang, J.: Forecasting stock market indexes using principle component analysis and stochastic time effective neural network. Neurocomputing 156, 68–78 (2015)

    Google Scholar 

  45. Cao, Q., Leggio, K.B., Schniederjans, M.J.: A comparison between Fama and French’s model and artificial neural networks in predicting the Chinese stock market. Comput. Oper. Res. 32(10), 2499–2512 (2005)

    Article  MATH  Google Scholar 

  46. Zhang, D., Zhou, L.: Discovering golden nuggets: data mining in financial application. In: IEEE Transactions on Systems, Man, and Cybernetics, Applications and Reviews, Part C, vol. 34(4), pp. 513–522. IEEE, New York (2004)

    Google Scholar 

  47. Hsu, C-W., Chang, C-C., Lin, C-J. et al.: A Practical Guide to Support Vector Classification (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bashar Al-hnaity .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Al-hnaity, B., Abbod, M. (2016). Predicting Financial Time Series Data Using Hybrid Model. In: Bi, Y., Kapoor, S., Bhatia, R. (eds) Intelligent Systems and Applications. Studies in Computational Intelligence, vol 650. Springer, Cham. https://doi.org/10.1007/978-3-319-33386-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33386-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33384-7

  • Online ISBN: 978-3-319-33386-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics