Skip to main content

Optimal Tuning of Multivariable Centralized Fractional Order PID Controller Using Bat Optimization and Harmony Search Algorithms for Two Interacting Conical Tank Process

  • Chapter
  • First Online:
Intelligent Systems and Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 650))

Abstract

The control of multivariable interacting process is difficult because of the interaction effect between input output variables. In the proposed work, an attempt is made to design a Multivariable Centralized Fractional Order PID (MCFOPID) controller with the use of evolutionary optimization techniques. The Bat Optimization Algorithm (BOA) and Harmony Search algorithm (HS), the evolutionary optimization techniques are used for the tuning of the controller parameters. As the process is a Two-Input-Two-Output process, four FOPID controllers are required for the control of the two interacting conical tank process. Altogether 20 controller parameters need to be tuned. In a single run, all the 20 parameters are founding considering the interaction effect minimizing Integral Time Absolute Error (ITAE). The BOA, HS based MCFOPID controller is validated under tracking and disturbance rejection for minimum ITAE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Astrom, K.J. Johansson, K.H., Wang, Q-G.: Design of decoupled PI controllers for two-by-teo system, proceedings of IEEE Control Theory and Applications, 74(1), 149 (2002) (special section on PID control)

    Google Scholar 

  2. Nordfeldt, P., Hagglund, T.: Decoupler and PID controller design of TITO systems. J. Process Control 16, 923–93 (2006)

    Google Scholar 

  3. Nordfeldt, P., Hägglund, T.: Decoupler and PID controller design of TITO systems. J. Process Control 16(9), 923–936 (2006)

    Article  Google Scholar 

  4. Wang, Q.G., Huang, B., Guo, X.: Auto-tuning of TITO decoupling controllers from step tests. ISA Trans. 39, 407–418 (2000)

    Article  Google Scholar 

  5. Vijay Kumar, V., Rao, V.S.R., Chidambaram, M.: Centralized PI controller for interacting multivariable process by synthesis method. ISA Trans. 51, 400–409 (2012)

    Article  Google Scholar 

  6. Manabe, S.: The non-integer integral and its application to control systems. ETJ of Jpn 6(3/4), 83–87 (1961)

    Google Scholar 

  7. Podlubny, I.: Fractional-order systems and controller. IEEE Trans. Autom. Control 44(1), 208–214 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Padula, F., Visioli, A.: Tuning rules for optimal PID and fractional-order PID controllers. J. Process Control 21, 69–81 (2011)

    Article  MATH  Google Scholar 

  9. Valerio, D., Costa, J.: Tuning of fractional PID controllers with Ziegler–Nichols-type rules. Signal Process. 86(10), 2771–2784 (2006)

    Article  MATH  Google Scholar 

  10. Chen, Y.: A fractional order PID tuning algorithm for a class of fractional order plants, In: Proceedings of IEEE International Conference on Mechatronics & Automation (2005)

    Google Scholar 

  11. Monje, C.A., Vinagre, B.M., Feliu, V., Chen, Y.: Tuning and auto-tuning of fractional order controllers for industry applications. Control Eng. Practice 16(7), 798–812 (2008)

    Article  Google Scholar 

  12. Padula, F., Visioli, A.: Tuning rules for optimal PID and fractional order PID controller. J. Process Control 21, 69–81 (2011)

    Article  Google Scholar 

  13. Bianchi, L., Dorigo, M., Gambardella, L.M., Gutjahr, W.J.: A survey on metaheuristics for stochastic combinatorial optimization. Nat. Comput.: an Int. J. 8(2), 239–287 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yang, X.S.: Engineering Optimization: An Introduction with Metaheuristic Applications. Wiley, New York (2010)

    Book  Google Scholar 

  15. Koziel, S., Yang, X.S.: Computational Optimization and Applications in Engineering and Industry. Springer, Germany (2011)

    Google Scholar 

  16. Zamani, M., Karimi-Ghartemani, M., Sadati, N., Parniani, M.: Design of a fractional order PID controller for an AVR using particle swarm optimization. Control Eng. Practice 17(12), 1380–1387 (2009)

    Article  Google Scholar 

  17. Binguland, Z., Karahan, O.: Tuning of fractional PID controllers using PSO algorithm for robot trajectory control. In: Proceedings of the IEEE International Conference on Mechatronics, Istanbul, Turkey (2011)

    Google Scholar 

  18. Zamani, M., Karimi-Ghartemani, M., Sadati, N., Parniani, M.: Design of fractional order PID controller for an AVR using particle swarm optimization. Control Eng. Practice 17, 1380–1387 (2009)

    Article  Google Scholar 

  19. Biswas, A., Das, S., Abraham, A.: SambartaDasgupta.: design of fractional order PI\(\lambda \)D\(\mu \) controller with improved differential evolution. Eng. Appl. Artif. Intell. 22, 343–350 (2009)

    Article  MathSciNet  Google Scholar 

  20. Biswas, A., Das, S., Abraham, A., Dasgupta, S.: Design of fractional-order controllers with an improved differential evolution. Eng. Appl. Artif. Intell. 22, 343–350 (2009)

    Article  MathSciNet  Google Scholar 

  21. Kirkpatrick, S., Gelatt, C.D., Vecchi., M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  22. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001)

    Article  Google Scholar 

  23. Lee, K.S., Geem, Z.W.: A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput. Methods Appl. Mech. Eng., Eng 194, 3902–3933 (2004)

    Article  MATH  Google Scholar 

  24. Geem, Z.W. (ed.): Music-Inspired Harmony Search Algorithm: Theory and Applications. Studies in ComputationalIntelligence. Springer, Berlin (2009)

    Google Scholar 

  25. Yang, X.S.: A new metaheuristic bat-inspired algorithm. Studies Comput. Intell. 284, 65–74 (2010)

    MATH  Google Scholar 

  26. Yang, X.S., Gandomi, A.H.: Bat algorithm: a novel approach for global engineering optimization. Eng. Comput. 29, 464–483 (2012)

    Article  Google Scholar 

  27. Yang, X.-S.: Bat algorithm: literature review and applications. Int. J. Bio-Inspired Comput. 5(3), 141–149 (2013)

    Article  Google Scholar 

  28. Chen, YQ., Petra, I., Xue, D.: Fractional order control—a tutorial. In: Proceedings of American control conference. St. Louis (MO, USA): Hyatt Regency Riverfront, June 10–12 2009

    Google Scholar 

  29. Davison, E.J.: Multivariable tuning regulators: the feedforward and robust control of general servo-mechanism problem, IEEE Trans. Autom. Control, vol. 21, pp.35–47 (1976)

    Google Scholar 

  30. Moradi, M.: A genetic-multivariable fractional order PID control to multi-inputmulti-output processes. J. Process Control 24, 336–343 (2014)

    Article  Google Scholar 

  31. Monje, C.A., Chen, Y., Vinagre, B.M., Xue, D., Feliu-Batlle, V.: Fractional-order Sys-tems and Controls Fundamentals and Applications. Springer, London (2010)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. K. Lakshmanaprabu or U. Sabura Banu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lakshmanaprabu, S.K., Sabura Banu, U. (2016). Optimal Tuning of Multivariable Centralized Fractional Order PID Controller Using Bat Optimization and Harmony Search Algorithms for Two Interacting Conical Tank Process. In: Bi, Y., Kapoor, S., Bhatia, R. (eds) Intelligent Systems and Applications. Studies in Computational Intelligence, vol 650. Springer, Cham. https://doi.org/10.1007/978-3-319-33386-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33386-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33384-7

  • Online ISBN: 978-3-319-33386-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics