Skip to main content

Biostatistics for the Intensivist: A Clinically Oriented Guide to Research Analysis and Interpretation

  • Chapter
  • First Online:

Abstract

Statistical analysis is an integral and necessary part of being a clinician. Applying the results of statistical analysis can change clinical practices in a meaningful way. Consequently, this biostatistics chapter has been created to provide a basic understanding of statistics as applied to the analysis of research studies. This chapter outlines the basic mechanics of statistics, describes different study types, and explains statistical testing from a practical perspective.

This is a preview of subscription content, log in via an institution.

References

  1. Slee VN. Statistics influence medical practice. Mod Hosp. 1954;83(1):55–8.

    CAS  PubMed  Google Scholar 

  2. Lancaster HO. Statistics and medical practice. Med J Aust. 1982;1(9):366.

    CAS  PubMed  Google Scholar 

  3. Stawicki SP, et al. Fundamentals of patient safety in medicine & surgery. 1st ed. New Delhi: Wolters Kluwer (India) Pvt. Ltd; 2015.

    Google Scholar 

  4. McCluskey A, Lalkhen AG. Statistics IV: interpreting the results of statistical tests. Contin Educ Anaesth Crit Care Pain. 2007;7(6):208–12.

    Google Scholar 

  5. Lieberman MD, Cunningham WA. Type I and Type II error concerns in fMRI research: re-balancing the scale. Soc Cogn Affect Neurosci. 2009;4(4):423–8.

    PubMed  PubMed Central  Google Scholar 

  6. Greenfield ML, Kuhn JE, Wojtys EM. A statistics primer. P values: probability and clinical significance. Am J Sports Med. 1996;24(6):863–5.

    CAS  PubMed  Google Scholar 

  7. Rosen BL, DeMaria AL. Statistical significance vs. practical significance: an exploration through health education. Am J Health Edu. 2012;43(4):235–41.

    Google Scholar 

  8. Case LD, Ambrosius WT. Power and sample size. Methods Mol Biol. 2007;404:377–408.

    PubMed  Google Scholar 

  9. Freedman KB, Back S, Bernstein J. Sample size and statistical power of randomised, controlled trials in orthopaedics. J Bone Joint Surg Br. 2001;83(3):397–402.

    CAS  PubMed  Google Scholar 

  10. Jaykaran PY, Kantharia ND. Reporting of sample size and power in negative clinical trials published in Indian medical journals. J Pharm Negat Results. 2011;2(2):87–90.

    Google Scholar 

  11. Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale: L. Erlbaum Associates; 1988. p. 567.

    Google Scholar 

  12. Boxer PJ. Notes on Checkland’s soft systems methodology. 1994 [May 3, 2015]; Available from: http://web.archive.org/web/20091229162231/http://www.brl.com/pdfs/checklnd.pdf.

  13. GraphPad. What is the difference between Type I, Type II, and Type III errors? 2015 [May 3, 2015]; Available from: http://graphpad.com/support/faqid/1080/.

  14. Rothman KJ, Greenland S, Lash TL. Modern epidemiology. 3rd ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2008. p. 758. x.

    Google Scholar 

  15. Hill HA, Kleinbaum DG. Bias in observational studies. Encyclopedia Biostatistics. 2005. 1.

    Google Scholar 

  16. Sica GT. Bias in research studies. Radiology. 2006;238(3):780–9.

    PubMed  Google Scholar 

  17. Pannucci CJ, Wilkins EG. Identifying and avoiding bias in research. Plast Reconstr Surg. 2010;126(2):619–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Duffy SW, et al. Correcting for lead time and length bias in estimating the effect of screen detection on cancer survival. Am J Epidemiol. 2008;168(1):98–104.

    PubMed  Google Scholar 

  19. Hennessy S, et al. Factors influencing the optimal control-to-case ratio in matched case-control studies. Am J Epidemiol. 1999;149(2):195–7.

    CAS  PubMed  Google Scholar 

  20. ResearchGate. What is the rationale for 1:2 ratio in case-control studies? 2015 [May 3, 2015]; Available from: https://www.researchgate.net/post/What_is_the_Rationale_for_12_ratio_in_Case_Control_studies.

  21. Grimes DA, Schulz KF. Descriptive studies: what they can and cannot do. Lancet. 2002;359(9301):145–9.

    PubMed  Google Scholar 

  22. Zollinger RM, Ellison EH. Primary peptic ulcerations of the jejunum associated with islet cell tumors of the pancreas. Ann Surg. 1955;142(4):709–23; discussion, 724–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Grimes DA, Schulz KF. An overview of clinical research: the lay of the land. Lancet. 2002;359(9300):57–61.

    PubMed  Google Scholar 

  24. Grimes DA, Schulz KF. Cohort studies: marching towards outcomes. Lancet. 2002;359(9303):341–5.

    PubMed  Google Scholar 

  25. Barton S. Which clinical studies provide the best evidence? The best RCT still trumps the best observational study. BMJ. 2000;321(7256):255–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ioannidis JP. Interpretation of tests of heterogeneity and bias in meta-analysis. J Eval Clin Pract. 2008;14(5):951–7.

    PubMed  Google Scholar 

  27. McNutt LA, et al. Estimating the relative risk in cohort studies and clinical trials of common outcomes. Am J Epidemiol. 2003;157(10):940–3.

    PubMed  Google Scholar 

  28. Wilber ST, Fu R. Risk ratios and odds ratios for common events in cross-sectional and cohort studies. Acad Emerg Med. 2010;17(6):649–51.

    PubMed  Google Scholar 

  29. Stawicki SP. Guide to free statistical software: general applications. OPUS 12 Sci. 2010;4(1):12–3.

    Google Scholar 

  30. Stawicki SP. Guide to statistical software: meta-analysis applications. OPUS 12 Sci. 2011;5(1):4–5.

    Google Scholar 

  31. Larson MG. Descriptive statistics and graphical displays. Circulation. 2006;114(1):76–81.

    PubMed  Google Scholar 

  32. Onchiri S. Conceptual model on application of chi-square test in education and social sciences. Educ Res Rev. 2013;8(15):1231–41.

    Google Scholar 

  33. Balding DJ. A tutorial on statistical methods for population association studies. Nat Rev Genet. 2006;7(10):781–91.

    CAS  PubMed  Google Scholar 

  34. Hosmer DW, Lemeshow S. Applied logistic regression, Wiley series in probability and statistics texts and references section. 2nd ed. New York: Wiley; 2000. p. 373. xii.

    Google Scholar 

  35. Stratford PW. The added value of confidence intervals. Phys Ther. 2010;90(3):333–5.

    PubMed  Google Scholar 

  36. McCluskey A, Lalkhen AG. Statistics II: central tendency and spread of data. Contin Educ Anaesth Crit Care Pain. 2007;7(4):127–30.

    Google Scholar 

  37. Salmond S. Taking the mystery out of research: box and whisker plots: displaying mean, interquartile range, and range. Orthop Nurs. 2007;26(1):33.

    PubMed  Google Scholar 

  38. Wan X, et al. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14(1):135.

    PubMed  PubMed Central  Google Scholar 

  39. Lyon A. Why are normal distributions normal? Br J Philos Sci. 2014;65(3):621–49.

    Google Scholar 

  40. Barde MP, Barde PJ. What to use to express the variability of data: standard deviation or standard error of mean? Perspect Clin Res. 2012;3(3):113–6.

    PubMed  PubMed Central  Google Scholar 

  41. Curran-Everett D. Explorations in statistics: standard deviations and standard errors. Adv Physiol Educ. 2008;32(3):203–8.

    PubMed  Google Scholar 

  42. Sculco AD. Spine stats. The Kruskal-Wallis and Wilcoxon-Mann Whitney tests. Spine J. 2001;1(2):153.

    CAS  PubMed  Google Scholar 

  43. Hollander M, Wolfe DA. Nonparametric statistical methods, Wiley series in probability and statistics texts and references section. 2nd ed. New York: Wiley; 1999. p. 787. xiv.

    Google Scholar 

  44. Lazic SE. Why we should use simpler models if the data allow this: relevance for ANOVA designs in experimental biology. BMC Physiol. 2008;8(1):16.

    PubMed  PubMed Central  Google Scholar 

  45. Tabachnick BG, Fidell LS. Experimental designs using ANOVA. Belmont: Thomson/Brooks/Cole; 2007. p. 724. xxi.

    Google Scholar 

  46. Bewick V, Cheek L, Ball J. Statistics review 7: correlation and regression. Crit Care. 2003;7(6):451–9.

    PubMed  PubMed Central  Google Scholar 

  47. Curran-Everett D. Explorations in statistics: regression. Adv Physiol Educ. 2011;35(4):347–52.

    PubMed  Google Scholar 

  48. Tabachnick BG, Fidell LS. Using multivariate statistics. 5th ed. Boston: Pearson/Allyn & Bacon; 2007. p. 980. xxviii.

    Google Scholar 

  49. Curran-Everett D. Explorations in statistics: confidence intervals. Adv Physiol Educ. 2009;33(2):87–90.

    PubMed  Google Scholar 

  50. Wikipedia. 68–95–99.7 rule. 2015 [May 3, 2015]; Available from: http://en.wikipedia.org/wiki/68%E2%80%9395%E2%80%9399.7_rule.

  51. Parikh R, et al. Understanding and using sensitivity, specificity and predictive values. Indian J Ophthalmol. 2008;56(1):45–50.

    PubMed  PubMed Central  Google Scholar 

  52. Bruno P. The importance of diagnostic test parameters in the interpretation of clinical test findings: the prone hip extension test as an example. J Can Chiropr Assoc. 2011;55(2):69–75.

    PubMed  PubMed Central  Google Scholar 

  53. Fawcett T. An introduction to ROC analysis. Pattern Recog Lett. 2006;27(8):861–74.

    Google Scholar 

  54. Pett MA. Nonparametric statistics for health care research: statistics for small samples and unusual distributions. Thousand Oaks: Sage Publications; 1997. p. 307.

    Google Scholar 

  55. Viera AJ, Garrett JM. Understanding interobserver agreement: the kappa statistic. Fam Med. 2005;37(5):360–3.

    PubMed  Google Scholar 

  56. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159–74.

    CAS  PubMed  Google Scholar 

  57. Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86(2):420–8.

    CAS  PubMed  Google Scholar 

  58. Bewick V, Cheek L, Ball J. Statistics review 12: survival analysis. Crit Care. 2004;8(5):389–94.

    PubMed  PubMed Central  Google Scholar 

  59. UCLA. Supplemental notes to applied survival analysis: applied survival analysis. 2015 [May 3, 2015]; Available from: http://www.ats.ucla.edu/stat/examples/asa/test_proportionality.htm.

  60. Lee ET. Statistical methods for survival data analysis, Wiley series in probability and mathematical statistics applied probability and statistics. 2nd ed. New York: Wiley; 1992. p. 482. xii.

    Google Scholar 

  61. Conley EC, et al. Simultaneous trend analysis for evaluating outcomes in patient-centred health monitoring services. Health Care Manag Sci. 2008;11(2):152–66.

    PubMed  Google Scholar 

  62. Stawicki SP. Financial analysis techniques in clinical practice: from ‘micro’ to ‘macro’. OPUS 12 Sci. 2008;2(3):3–9.

    Google Scholar 

  63. Stawicki SP, et al. The glucogram: a new quantitative tool for glycemic analysis in the surgical intensive care unit. Int J Crit Illn Inj Sci. 2011;1(1):5–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Stawicki SP. Application of financial analysis techniques to clinical laboratory data: a novel method of trend interpretation in the intensive care unit. OPUS 12 Sci. 2007;1(2):1–4.

    Google Scholar 

  65. Stawicki SP. Application of financial analysis techniques to vital sign data: a novel method of trend interpretation in the intensive care unit. OPUS 12 Sci. 2007;1(1):14–6.

    Google Scholar 

  66. Pappada SM, et al. Evaluation of a model for glycemic prediction in critically ill surgical patients. PLoS One. 2013;8(7):e69475.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Rosenberg, D. U. S. Department of health & human services, division of science, education and analysis: trend analysis and interpretation. 1997; Available from: http://mchb.hrsa.gov/publications/pdfs/trendanaylsis.pdf.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidi H. Hon MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hon, H.H., Stoltzfus, J.C., Stawicki, S.P. (2016). Biostatistics for the Intensivist: A Clinically Oriented Guide to Research Analysis and Interpretation. In: Martin, N.D., Kaplan, L.J. (eds) Principles of Adult Surgical Critical Care. Springer, Cham. https://doi.org/10.1007/978-3-319-33341-0_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33341-0_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33339-7

  • Online ISBN: 978-3-319-33341-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics