Skip to main content

Cyclic Equivalence to Sums of Hermitian Squares

  • Chapter
  • First Online:
Optimization of Polynomials in Non-Commuting Variables

Part of the book series: SpringerBriefs in Mathematics ((BRIEFSMATH))

  • 659 Accesses

Abstract

When we move focus from positive semidefinite non-commutative polynomials to trace-positive non-commutative polynomials we naturally meet cyclic equivalence to hermitian squares, see Definitions 1.57 and 1.60 In this chapter we will consider the question whether an nc polynomial is cyclically equivalent to SOHS, i.e., whether it is a member of the cone \(\varTheta ^{2}\), which is a sufficient condition for trace-positivity. A special attention will be given to algorithmic aspects of detecting members in \(\varTheta ^{2}\). We present a tracial version of the Gram matrix method based on the tracial version of the Newton chip method which by using semidefinite programming efficiently answers the question if a given nc polynomial is or is not cyclically equivalent to a sum of hermitian squares.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bessis, D., Moussa, P., Villani, M.: Monotonic converging variational approximations to the functional integrals in quantum statistical mechanics. J. Math. Phys. 16 (11), 2318–2325 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  2. Burgdorf, S.: Sums of hermitian squares as an approach to the BMV conjecture. Linear Multilinear Algebra 59 (1), 1–9 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Burgdorf, S., Cafuta, K., Klep, I., Povh, J.: The tracial moment problem and trace-optimization of polynomials. Math. Program. 137 (1–2), 557–578 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cafuta, K., Klep, I., Povh, J.: A note on the nonexistence of sum of squares certificates for the Bessis-Moussa-Villani conjecture. J. Math. Phys. 51 (8), 083521, 10 (2010)

    Google Scholar 

  5. Cafuta, K., Klep, I., Povh, J.: NCSOStools: a computer algebra system for symbolic and numerical computation with noncommutative polynomials. Optim. Methods. Softw. 26 (3), 363–380 (2011). Available from http://ncsostools.fis.unm.si/

    Article  MathSciNet  MATH  Google Scholar 

  6. Cafuta, K., Klep, I., Povh, J.: Rational sums of hermitian squares of free noncommutative polynomials. Ars Math. Contemp. 9 (2), 253–269 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Choi, M.-D., Lam, T.Y., Reznick, B.: Sums of squares of real polynomials. In: K-Theory and Algebraic Geometry: Connections with Quadratic Forms and Division Algebras (Santa Barbara,CA, 1992). Proceedings of Symposia in Pure Mathematics, vol. 58, pp. 103–126. American Mathematical Society, Providence (1995)

    Google Scholar 

  8. Collins, B., Dykema, K.J., Torres-Ayala, F.: Sum-of-squares results for polynomials related to the Bessis-Moussa-Villani conjecture. J. Stat. Phys. 139 (5), 779–799 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hägele, D.: Proof of the cases p ≤ 7 of the Lieb-Seiringer formulation of the Bessis-Moussa-Villani conjecture. J. Stat. Phys. 127 (6), 1167–1171 (2007)

    Google Scholar 

  10. Halická, M., de Klerk, E., Roos, C.: On the convergence of the central path in semidefinite optimization. SIAM J. Optim. 12 (4), 1090–1099 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hillar, C.J.: Advances on the Bessis-Moussa-Villani trace conjecture. Linear Algebra Appl. 426 (1), 130–142 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Klep, I., Povh, J.: Semidefinite programming and sums of hermitian squares of noncommutative polynomials. J. Pure Appl. Algebra 214, 740–749 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Klep, I., Schweighofer, M.: Sums of hermitian squares and the BMV conjecture. J. Stat. Phys 133 (4), 739–760 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Landweber, P.S., Speer, E.R.: On D. Hägele’s approach to the Bessis-Moussa-Villani conjecture. Linear Algebra Appl. 431 (8), 1317–1324 (2009)

    Google Scholar 

  15. Lieb, E.H., Seiringer, R.: Equivalent forms of the Bessis-Moussa-Villani conjecture. J. Stat. Phys. 115 (1–2), 185–190 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Malick, J., Povh, J., Rendl, F., Wiegele, A.: Regularization methods for semidefinite programming. SIAM J. Optim. 20 (1), 336–356 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mittelmann, H.D.: An independent benchmarking of SDP and SOCP solvers. Math. Program. B 95, 407–430 (2003). http://plato.asu.edu/bench.html

    Article  MathSciNet  MATH  Google Scholar 

  18. Parrilo, P.A.: Semidefinite programming relaxations for semialgebraic problems. Math. Program. 96 (2, Ser. B), 293–320 (2003)

    Google Scholar 

  19. Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 52 (3), 471–501 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Reznick, B.: Extremal PSD forms with few terms. Duke Math. J. 45 (2), 363–374 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  21. Stahl, H.R.: Proof of the BMV conjecture. Acta Math. 211 (2), 255–290 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Burgdorf, S., Klep, I., Povh, J. (2016). Cyclic Equivalence to Sums of Hermitian Squares. In: Optimization of Polynomials in Non-Commuting Variables. SpringerBriefs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-33338-0_3

Download citation

Publish with us

Policies and ethics