Advertisement

Cyclic Equivalence to Sums of Hermitian Squares

  • Sabine Burgdorf
  • Igor Klep
  • Janez Povh
Chapter
  • 457 Downloads
Part of the SpringerBriefs in Mathematics book series (BRIEFSMATH)

Abstract

When we move focus from positive semidefinite non-commutative polynomials to trace-positive non-commutative polynomials we naturally meet cyclic equivalence to hermitian squares, see Definitions 1.57 and 1.60 In this chapter we will consider the question whether an nc polynomial is cyclically equivalent to SOHS, i.e., whether it is a member of the cone \(\varTheta ^{2}\), which is a sufficient condition for trace-positivity. A special attention will be given to algorithmic aspects of detecting members in \(\varTheta ^{2}\). We present a tracial version of the Gram matrix method based on the tracial version of the Newton chip method which by using semidefinite programming efficiently answers the question if a given nc polynomial is or is not cyclically equivalent to a sum of hermitian squares.

Keywords

Matrix Method Positive Semidefinite Semidefinite Programming Quantifier Elimination Positive Semidefinite Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [BMV75]
    Bessis, D., Moussa, P., Villani, M.: Monotonic converging variational approximations to the functional integrals in quantum statistical mechanics. J. Math. Phys. 16 (11), 2318–2325 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  2. [Bur11]
    Burgdorf, S.: Sums of hermitian squares as an approach to the BMV conjecture. Linear Multilinear Algebra 59 (1), 1–9 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  3. [BCKP13]
    Burgdorf, S., Cafuta, K., Klep, I., Povh, J.: The tracial moment problem and trace-optimization of polynomials. Math. Program. 137 (1–2), 557–578 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  4. [CKP10]
    Cafuta, K., Klep, I., Povh, J.: A note on the nonexistence of sum of squares certificates for the Bessis-Moussa-Villani conjecture. J. Math. Phys. 51 (8), 083521, 10 (2010)Google Scholar
  5. [CKP11]
    Cafuta, K., Klep, I., Povh, J.: NCSOStools: a computer algebra system for symbolic and numerical computation with noncommutative polynomials. Optim. Methods. Softw. 26 (3), 363–380 (2011). Available from http://ncsostools.fis.unm.si/ MathSciNetCrossRefzbMATHGoogle Scholar
  6. [CKP15]
    Cafuta, K., Klep, I., Povh, J.: Rational sums of hermitian squares of free noncommutative polynomials. Ars Math. Contemp. 9 (2), 253–269 (2015)MathSciNetzbMATHGoogle Scholar
  7. [CLR95]
    Choi, M.-D., Lam, T.Y., Reznick, B.: Sums of squares of real polynomials. In: K-Theory and Algebraic Geometry: Connections with Quadratic Forms and Division Algebras (Santa Barbara,CA, 1992). Proceedings of Symposia in Pure Mathematics, vol. 58, pp. 103–126. American Mathematical Society, Providence (1995)Google Scholar
  8. [CDTA10]
    Collins, B., Dykema, K.J., Torres-Ayala, F.: Sum-of-squares results for polynomials related to the Bessis-Moussa-Villani conjecture. J. Stat. Phys. 139 (5), 779–799 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. [Häg07]
    Hägele, D.: Proof of the cases p ≤ 7 of the Lieb-Seiringer formulation of the Bessis-Moussa-Villani conjecture. J. Stat. Phys. 127 (6), 1167–1171 (2007)Google Scholar
  10. [HdKR02]
    Halická, M., de Klerk, E., Roos, C.: On the convergence of the central path in semidefinite optimization. SIAM J. Optim. 12 (4), 1090–1099 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  11. [Hil07]
    Hillar, C.J.: Advances on the Bessis-Moussa-Villani trace conjecture. Linear Algebra Appl. 426 (1), 130–142 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. [KP10]
    Klep, I., Povh, J.: Semidefinite programming and sums of hermitian squares of noncommutative polynomials. J. Pure Appl. Algebra 214, 740–749 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  13. [KS08]
    Klep, I., Schweighofer, M.: Sums of hermitian squares and the BMV conjecture. J. Stat. Phys 133 (4), 739–760 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. [LS09]
    Landweber, P.S., Speer, E.R.: On D. Hägele’s approach to the Bessis-Moussa-Villani conjecture. Linear Algebra Appl. 431 (8), 1317–1324 (2009)Google Scholar
  15. [LS04]
    Lieb, E.H., Seiringer, R.: Equivalent forms of the Bessis-Moussa-Villani conjecture. J. Stat. Phys. 115 (1–2), 185–190 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  16. [MPRW09]
    Malick, J., Povh, J., Rendl, F., Wiegele, A.: Regularization methods for semidefinite programming. SIAM J. Optim. 20 (1), 336–356 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  17. [Mit03]
    Mittelmann, H.D.: An independent benchmarking of SDP and SOCP solvers. Math. Program. B 95, 407–430 (2003). http://plato.asu.edu/bench.html MathSciNetCrossRefzbMATHGoogle Scholar
  18. [Par03]
    Parrilo, P.A.: Semidefinite programming relaxations for semialgebraic problems. Math. Program. 96 (2, Ser. B), 293–320 (2003)Google Scholar
  19. [RFP10]
    Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 52 (3), 471–501 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  20. [Rez78]
    Reznick, B.: Extremal PSD forms with few terms. Duke Math. J. 45 (2), 363–374 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  21. [Sta13]
    Stahl, H.R.: Proof of the BMV conjecture. Acta Math. 211 (2), 255–290 (2013)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Sabine Burgdorf
    • 1
  • Igor Klep
    • 2
  • Janez Povh
    • 3
  1. 1.Centrum Wiskunde & InformaticaAmsterdamThe Netherlands
  2. 2.Department of MathematicsThe University of AucklandAucklandNew Zealand
  3. 3.Faculty of Information Studies in Novo MestoNovo MestoSlovenia

Personalised recommendations