Advertisement

Detecting Sums of Hermitian Squares

  • Sabine Burgdorf
  • Igor Klep
  • Janez Povh
Chapter
  • 460 Downloads
Part of the SpringerBriefs in Mathematics book series (BRIEFSMATH)

Abstract

The central question of this chapter is how to find out whether a given nc polynomial is a sum of hermitian squares (SOHS). We rely on Sect. 1.3, where we explained basic relations between SOHS polynomials and positive semidefinite Gram matrices. In this chapter we will enclose these results into the Gram matrix method and refine it with the Newton chip method.

Keywords

Hermitian Square Positive Semidefinite Gram Matrix Method Strong Duality Property Symmetric Monomials 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [BPR06]
    Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry. Algorithms and Computation in Mathematics, vol. 10, 2nd edn. Springer, Berlin (2006)Google Scholar
  2. [CKP11]
    Cafuta, K., Klep, I., Povh, J.: NCSOStools: a computer algebra system for symbolic and numerical computation with noncommutative polynomials. Optim. Methods Softw. 26 (3), 363–380 (2011). Available from http://ncsostools.fis.unm.si/ MathSciNetCrossRefzbMATHGoogle Scholar
  3. [dK02]
    de Klerk, E.: Aspects of Semidefinite Programming. Applied Optimization, vol. 65. Kluwer Academic, Dordrecht (2002)Google Scholar
  4. [dKRT98]
    de Klerk, E., Roos, C., Terlaky, T.: Infeasible-start semidefinite programming algorithms via self-dual embeddings. In: Topics in Semidefinite and Interior-Point Methods (Toronto, ON, 1996). Fields Institute Communications, vol. 18, pp. 215–236. American Mathematical Society, Providence (1998)Google Scholar
  5. [HMdOS15]
    Helton, J.W., Miller, R.L., de Oliveira, M.C., Stankus, M.: NCAlgebra: a mathematica package for doing non commuting algebra. Available from http://www.math.ucsd.edu/~ncalg/ (2015)
  6. [HLL09]
    Henrion, D., Lasserre, J.B., Löfberg, J.: GloptiPoly 3: moments, optimization and semidefinite programming. Optim. Methods Softw. 24 (4–5), 761–779 (2009). Available from http://www.laas.fr/~henrion/software/gloptipoly3/ MathSciNetCrossRefzbMATHGoogle Scholar
  7. [Löf04]
    Löfberg, J.: YALMIP: a toolbox for modeling and optimization in MATLAB. In: Proceedings of the CACSD Conference, Taipei. Available from http://control.ee.ethz.ch/~joloef/wiki/pmwiki.php (2004)
  8. [MPRW09]
    Malick, J., Povh, J., Rendl, F., Wiegele, A.: Regularization methods for semidefinite programming. SIAM J. Optim. 20 (1), 336–356 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  9. [ApS15]
    MOSEK ApS: The MOSEK optimization toolbox for MATLAB manual. Version 7.1 (Revision 28) (2015)Google Scholar
  10. [PT09]
    Pólik, I., Terlaky, T.: New stopping criteria for detecting infeasibility in conic optimization. Optim. Lett. 3 (2), 187–198 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  11. [PRW06]
    Povh, J., Rendl, F., Wiegele, A.: A boundary point method to solve semidefinite programs. Computing 78, 277–286 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  12. [PW98]
    Powers, V., Wörmann, T.: An algorithm for sums of squares of real polynomials. J. Pure Appl. Algebra 127 (1), 99–104 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  13. [PPSP05]
    Prajna, S., Papachristodoulou, A., Seiler, P., Parrilo, P.A.: SOSTOOLS and its control applications. In: Positive Polynomials in Control. Lecture Notes in Control and Information Science, vol. 312, pp. 273–292. Springer, Berlin (2005)Google Scholar
  14. [RFP10]
    Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 52 (3), 471–501 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  15. [Rez78]
    Reznick, B.: Extremal PSD forms with few terms. Duke Math. J. 45 (2), 363–374 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  16. [Stu99]
    Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11/12 (1–4), 625–653 (1999). Available from http://sedumi.ie.lehigh.edu/ Google Scholar
  17. [Ter96]
    Terlaky, T. (ed.): Interior Point Methods of Mathematical Programming. Applied Optimization, vol. 5. Kluwer Academic, Dordrecht (1996)Google Scholar
  18. [TTT99]
    Toh, K.C., Todd, M.J., Tütüncü, R.: SDPT3–a MATLAB software package for semidefinite programming, version 1.3. Optim. Methods Softw. 11/12 (1–4), 545–581 (1999). Available from http://www.math.nus.edu.sg/~~mattohkc/sdpt3.html
  19. [WKK+09]
    Waki, H., Kim, S., Kojima, M., Muramatsu, M., Sugimoto, H.: Algorithm 883: sparsePOP—a sparse semidefinite programming relaxation of polynomial optimization problems. ACM Trans. Math. Softw. 35 (2), Art. 15, 13 (2009)Google Scholar
  20. [WSV00]
    Wolkowicz, H., Saigal, R., Vandenberghe, L.: Handbook of Semidefinite Programming. Kluwer, Boston (2000)CrossRefzbMATHGoogle Scholar
  21. [YFK03]
    Yamashita, M., Fujisawa, K., Kojima, M.: Implementation and evaluation of SDPA 6.0 (semidefinite programming algorithm 6.0). Optim. Methods Softw. 18 (4), 491–505 (2003). Available from http://sdpa.sourceforge.net/ Google Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Sabine Burgdorf
    • 1
  • Igor Klep
    • 2
  • Janez Povh
    • 3
  1. 1.Centrum Wiskunde & InformaticaAmsterdamThe Netherlands
  2. 2.Department of MathematicsThe University of AucklandAucklandNew Zealand
  3. 3.Faculty of Information Studies in Novo MestoNovo MestoSlovenia

Personalised recommendations