Skip to main content

A Forest Transition: Austrian Carbon Budgets 1830–2010

  • Chapter
  • First Online:
Social Ecology

Part of the book series: Human-Environment Interactions ((HUEN,volume 5))

Abstract

The concept of forest transitions was introduced by geographers in the 1990s to describe the observation that forests regrow with industrialization in many parts of the world. We use the case of Austria to discuss the forest transition in the context of Social Ecology based on empirical evidence on Austria’s carbon budget in the period 1830–2010. In this period, Austria’s forests grew not only in area but also in wood density, resulting in a carbon sink of 23 %, or ca. 240 MtC (megatons carbon). This process was accompanied by increasing societal use of carbon, due in part to the surge in fossil fuel use and a fivefold increase in societal carbon stocks, or a sink of ca. 110 MtC, in 2010. As in ecosystems, (construction) wood was the main component driving rising carbon stocks in society. Although somewhat significant in extent, annual carbon sink rates are well below fossil fuel emissions to the atmosphere. We argue that the carbon sink in Austria’s ecosystems and society was a by-product of increasing societal carbon throughput in the course of industrialization, fuelled by the use of fossil energy, and that carbon sequestration is therefore an unsuitable strategy to mitigate carbon emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Although somewhat different in focus, this argument is quite in line with ‘old’ arguments brought forward in the first discussions of the forest transition. Mather and Needle (1998) also discuss the fact that forest areas increase while agricultural areas retreat to the most favorable sites; however, they attribute this process to learning by farmers rather than technological change or energy availability.

References

  • Erb, K.-H. (2004). Land-use related changes in aboveground carbon stocks of Austria’s terrestrial ecosystems. Ecosystems, 7(5), 563–572.

    Article  Google Scholar 

  • Erb, K.-H., Haberl, H., & Krausmann, F. (2007). The fossil-fuel powered carbon sink. Carbon flows and Austria’s energetic metabolism in a long-term perspective. In M. Fischer-Kowalski & H. Haberl (Eds.), Socioecological transitions and global change: Trajectories of social metabolism and land use (pp. 60–82). Cheltenham, UK, Northampton, USA: Edward Elgar.

    Google Scholar 

  • Erb, K.-H., Gingrich, S., Krausmann, F., & Haberl, H. (2008a). Industrialization, fossil fuels and the transformation of land use: An integrated analysis of carbon flows in Austria 1830-2000. Journal of Industrial Ecology, 12(5–6), 686–703.

    Article  CAS  Google Scholar 

  • Fischer-Kowalski, M., & Haberl, H. (2007). Conceptualizing, observing and comparing socioecological transitions. In M. Fischer-Kowalski & H. Haberl (Eds.), Socioecological transitions and global change: Trajectories of social metabolism and land use (pp. 1–30). Cheltenham, UK, Northampton, USA: Edward Elgar.

    Chapter  Google Scholar 

  • Gingrich, S., Erb, K.-H., Krausmann, F., Gaube, V., & Haberl, H. (2007). Long-term dynamics of terrestrial carbon stocks in Austria. A comprehensive assessment of the time period from 1830 to 2000. Regional Environmental Change, 7(1), 37–47.

    Google Scholar 

  • Grainger, A. (1995). The forest transition: An alternative approach. Area, 27, 242–251.

    Google Scholar 

  • Kauppi, P. E., Ausubel, J. H., Fang, J., Mather, A. S., Sedjo, R. A., & Waggoner, P. E. (2006). Returning forests analyzed with the forest identity. Proceedings of the National Academy of Sciences of the United States of America, 103(46), 17574–17579.

    Article  CAS  Google Scholar 

  • Krausmann, F. (2001). Land use and industrial modernization: An empirical analysis of human influence on the functioning of ecosystems in Austria 1830–1995. Land Use Policy, 18(1), 17–26.

    Article  Google Scholar 

  • Krausmann, F., & Haberl, H. (2007). Land-use change and socio-economic metabolism. A macro view of Austria 1830–2000. In M. Fischer-Kowalski & H. Haberl (Eds.), Socioecological transitions and global change: Trajectories of social metabolism and land use (pp. 31–59). Cheltenham, UK, Northampton, USA: Edward Elgar.

    Google Scholar 

  • Kuemmerle, T., Olofsson, P., Chaskovskyy, O., Baumann, M., Ostapowicz, K., Woodcock, C. E., et al. (2011). Post-Soviet farmland abandonment, forest recovery, and carbon sequestration in western Ukraine. Global Change Biology, 17(3), 1335–1349.

    Article  Google Scholar 

  • Lauk, C., Haberl, H., Erb, K.-H., Gingrich, S., & Krausmann, F. (2012). Global socioeconomic carbon stocks and carbon sequestration in long-lived products 1900–2008. Environmental Research Letters, 7, 034023.

    Article  Google Scholar 

  • Mather, A. (1992). The forest transition. Area, 24(4), 367–379.

    Google Scholar 

  • Mather, A. S., & Needle, C. L. (1998). The forest transition: A theoretical basis. Area, 30(2), 117–124.

    Article  Google Scholar 

  • Meyfroidt, P., & Lambin, E. F. (2011). Global forest transition: Prospects for an end to deforestation. Annual Review of Environment and Resources, 36, 343–371.

    Article  Google Scholar 

  • Rudel, T. K., Coomes, O. T., Moran, E., Achard, F., Angelsen, A., Xu, J., & Lambin, E. (2005). Forest transitions: Towards a global understanding of land use change. Global Environmental Change Part A, 15(1), 23–31.

    Article  Google Scholar 

  • Weiss, P., Schieler, K., Schadauer, K., Radunsky, K., & Englisch, M. (2000). Die Kohlenstoffbilanz des österreichischen Waldes und Betrachtungen zum Kyoto-Protokoll. Wien: Umweltbundesamt.

    Google Scholar 

  • Wessely, J. (1882). Forstliches Jahrbuch für Oesterreich - Ungarn. Oesterreichs Donauländer. II. Theil: Spezial-Gemälde der Donauländer. Carl Fromme, Wien.

    Google Scholar 

References

  • Eggleston, S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K. (Eds.), (2006). 2006 IPCC guidelines for national greenhouse gas inventories (Vol. 4: Agriculture, forestry and other land use). Hayama, Japan: Institute for Global Environmental Strategies (IGES).

    Google Scholar 

  • Erb, K.-H., Gingrich, S., Krausmann, F., & Haberl, H. (2008). Industrialization, fossil fuels, and the transformation of land use. Journal of Industrial Ecology, 12, 686–703.

    Article  CAS  Google Scholar 

  • Erb, K.-H., Kastner, T., Luyssaert, S., Houghton, R. A., Kuemmerle, T., Olofsson, P., & Haberl, H. (2013). Bias in the attribution of forest carbon sinks. Nature Climate Change, 3, 854–856.

    Article  CAS  Google Scholar 

  • Gingrich, S., Erb, K.-H., Krausmann, F., Gaube, V., & Haberl, H. (2007b). Long-term dynamics of terrestrial carbon stocks in Austria: A comprehensive assessment of the time period from 1830 to 2000. Regional Environmental Change, 7, 37–47.

    Article  Google Scholar 

  • Hertwich, E. G., & Peters, G. P. (2009). Carbon footprint of nations: A global, trade-linked analysis. Environmental Science & Technology, 43, 6414–6420.

    Article  CAS  Google Scholar 

  • Houghton, R. A. (2003). Why are estimates of the terrestrial carbon balance so different? Global Change Biology, 9, 500–509.

    Article  Google Scholar 

  • Kastner, T., Erb, K.-H., & Nonhebel, S. (2011). International wood trade and forest change: A global analysis. Global Environmental Change, 21, 947–956.

    Article  Google Scholar 

  • Körner, C. (2003). Slow in, rapid out–carbon flux studies and Kyoto targets. Science, 300, 1242–1243.

    Article  Google Scholar 

  • Le Quéré, C., Raupach, M. R., Canadell, J. G., Marland, G., Bopp, L., Ciais, P., et al. (2009). Trends in the sources and sinks of carbon dioxide. Nature Geosci, 2, 831–836.

    Article  Google Scholar 

  • Nilsson, S., Shvidenko, A., Jonas, M., McCallum, I., Thomson, A., & Balzter, H. (2007). Uncertainties of a regional terrestrial biota full carbon account: A systems analysis. In D. Lieberman, M. Jonas, Z. Nahorski, & S. Nilsson (Eds.), Accounting for climate change (pp. 5–21). Netherlands: Springer.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Gingrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gingrich, S., Lauk, C., Kastner, T., Krausmann, F., Haberl, H., Erb, KH. (2016). A Forest Transition: Austrian Carbon Budgets 1830–2010. In: Haberl, H., Fischer-Kowalski, M., Krausmann, F., Winiwarter, V. (eds) Social Ecology. Human-Environment Interactions, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-33326-7_20

Download citation

Publish with us

Policies and ethics