Skip to main content

Fractal Grid Generated Turbulence—A Bridge to Practical Combustion Applications

  • Chapter
  • First Online:
Fractal Flow Design: How to Design Bespoke Turbulence and Why

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 568))

Abstract

Practical applications typically feature high turbulent Reynolds numbers and, increasingly, low Damköhler (Da) numbers leading to distributed combustion. Such conditions are difficult to achieve under laboratory conditions that permit detailed experimental investigations. The aerodynamically stabilised turbulent-opposed jet flame configuration is a case point—an exceptionally flexible canonical geometry traditionally featuring low turbulence levels. It is shown that fractal grids can be used to increase the turbulent Reynolds number, without any negative impact on other parameters, and to remove the classical problem of a relatively low ratio of turbulent to bulk strain. The use of fractal grids to ameliorate such problems is further exemplified for fuel lean combustion with low Da numbers achieved through the stabilisation of premixed flames against hot combustion products. An analysis is presented in the context of a multi-fluid formalism that extends the customary bimodal pdf approach to include combustion regime transitions. The approach is quantified via simultaneous OH-PLIF and PIV permitting the identification of five separate states (reactant, combustion product, mixing, mildly and strongly reacting fluids). The sensitivity of the distribution between the fluid states to threshold values is also evaluated for combustion of methane. The work suggests that a consistent treatment of the delineating thresholds is necessary when comparing different types of simulations (e.g. DNS) and experiments for reacting fluids with multiple states. The use of fractal grids is further exemplified in a flame driven shock tube and used to generate turbulent Re numbers of the order \(10^5\) for flows with Mach numbers approaching unity. The conditions are of relevance to flame stabilisation in hypersonics and are analysed through OH-PLIF and high speed PIV with optimal fractal grids selected on the basis of maximum flame acceleration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alekseev, V. I., Kuznetsov, M. S., Yankin, Y. G., & Dorofeev, S. B. (2001). Experimental study of flame acceleration and the deflagration-to-detonation transition under conditions of transverse venting. Journal of Loss Prevention in the Process Industries, 14(6), 591–596.

    Article  Google Scholar 

  • Battles, B. E., & Hanson, R. K. (1995). Laser-induced fluorescence measurements of no and oh mole fraction in fuel-lean, high-pressure(1–10 atm) methane flames: Fluorescence modelling and experimental validation. Journal of Quantitative Spectroscopy and Radiative Transfer, 54(3), 521–537.

    Article  Google Scholar 

  • Beauvais, R., Mayinger, F., & Strube, G. (1994). Turbulent flame acceleration-mechanisms and significance for safety considerations. International Journal of Hydrogen Energy, 19(8), 701–708.

    Article  Google Scholar 

  • Böhm, B., Heeger, C., Boxx, I., Meier, W., & Dreizler, A. (2009). Time-resolved conditional flow field statistics in extinguishing turbulent opposed jet flames using simultaneous highspeed piv/oh-plif. Proceedings of the Combustion Institute, 32(2), 1647–1654.

    Article  Google Scholar 

  • Ciccarelli, G., & Dorofeev, S. (2008). Flame acceleration and transition to detonation in ducts. Progress in Energy and Combustion Science, 34(4), 499–550.

    Article  Google Scholar 

  • Dally, B. B., Karpetis, A. N., & Barlow, R. S. (2002). Structure of turbulent non-premixed jet flames in a diluted hot coflow. Proceedings of the Combustion Institute, 29, 1147–1154.

    Article  Google Scholar 

  • Geipel, P., Goh, K. H. H., & Lindstedt, R. P. (2010). Fractal-generated turbulence in opposed jet flows. Flow, Turbulence and Combustion, 85, 397–419. ISSN 1386-6184.

    Article  MATH  Google Scholar 

  • Geyer, D., Kempf, A., Dreizler, A., & Janicka, J. (2005). Turbulent opposed-jet flames: A critical benchmark experiment for combustion les. Combustion and Flame, 143(4), 524–548.

    Article  Google Scholar 

  • Goh, K. H. H., Geipel, P., Hampp, F., & Lindstedt, R. P. (2013a). Flames in fractal grid generated turbulence. Fluid Dynamics Research, 45, 061403.

    Google Scholar 

  • Goh, K. H. H., Geipel, P., Hampp, F., & Lindstedt, R. P. (2013b). Regime transition from premixed to flameless oxidation in turbulent JP-10 flames. Proceedings of the Combustion Institute, 34(2), 3311–3318.

    Article  Google Scholar 

  • Goh, K. H. H., Geipel, P., & Lindstedt, R. P. (2014). Lean premixed opposed jet flames in fractal grid generated multiscale turbulence. Combustion and Flame, 161(9), 2419–2434.

    Article  Google Scholar 

  • Goh, K. H. H., Geipel, P., & Lindstedt, R. P. (2015). Turbulent transport in premixed flames approaching extinction. Proceedings of the Combustion Institute, 35(1), 1469–1476.

    Article  Google Scholar 

  • Gouldin, F. C. (1987). An application of fractals to modeling premixed turbulent flames. Combustion and Flame, 68(3), 249–266.

    Article  Google Scholar 

  • Hampp, F. (2016) Quantification of Combustion Regime Transitions. Ph.D. thesis, Imperial College.

    Google Scholar 

  • Hampp, F., & Lindstedt, R. P. (2014). Distributed turbulent combustion: Fundamental understanding of combustion regime transition of DME and CH\(_4\). In Proceedings of the TNF12, http://www.sandia.gov/TNF/12thWorkshop/index.php.

  • Hurst, D., & Vassilicos, J. C. (2007). Scalings and decay of fractal-generated turbulence. Physics of Fluids, 19, 035103.

    Article  MATH  Google Scholar 

  • Jones, W. P., & Lindstedt, R. P. (1988). The calculation of the structure of laminar counterflow diffusion flames using a global reaction mechanism. Combustion Science and Technology, 61, 31–49.

    Article  Google Scholar 

  • Kerl, J., Sponfeldner, T., & Beyrau, F. (2011). An external Raman laser for combustion diagnostics. Combustion and Flame, 158(10), 1905–1907.

    Article  Google Scholar 

  • Laizet, S., & Vassilicos, J. C. (2009). Multiscale generation of turbulence. Journal of Multiscale Modelling, 1(1), 177–196.

    Article  Google Scholar 

  • Laizet, S., Lamballais, E., & Vassilicos, J. C. (2010). A numerical strategy to combine high-order schemes, complex geometry and parallel computing for high resolution dns of fractal generated turbulence. Computers and Fluids, 39(3), 471–484.

    Article  MATH  Google Scholar 

  • Lee, J. H. S., Knystautas, R., & Freiman, A. (1984). High speed turbulent deflagrations and transition to detonation in h\(_{2}\)-air mixtures. Combustion and Flame, 56(2), 227–239.

    Article  Google Scholar 

  • Lieuwen, T., McDonell, V., Petersen, E., & Santavicca, D. (2008). Fuel flexibility influences on premixed combustor blowout, flashback, autoignition, and stability. Journal of Engineering for Gas Turbines and Power, 130(1), 011506.

    Article  Google Scholar 

  • Lindstedt, R. P., & Michels, H. J. (1988). Deflagration to detonation transition in mixtures of alkane LNG/LPG constituents with O\(_2\)/N\(_2\). Combustion and Flame, 72(1), 63–72.

    Article  Google Scholar 

  • Lindstedt, R. P., & Michels, H. J. (1989). Deflagration to detonation transitions and strong deflagrations in alkane and alkene air mixtures. Combustion and Flame, 76(2), 169–181.

    Article  Google Scholar 

  • Lindstedt, R. P. & Sakthitharan, V. (1991) Modelling of transient compressible turbulent reacting flows. In 8th Symposium on Turbulent Shear Flows.

    Google Scholar 

  • Lindstedt, R. P., & Sakthitharan, V. (1998). Time resolved velocity and turbulence measurements in turbulent gaseous explosions. Combustion and Flame, 114(3–4), 469–483.

    Article  Google Scholar 

  • Mandelbrot, B. B. (1974). Intermittent turbulence in self-similar cascades—divergence of high moments and dimension of the carrier. Journal of Fluid Mechanics, 62(2), 331–358.

    Article  MATH  Google Scholar 

  • Mandelbrot, B. B. (1975). On the geometry of homogeneous turbulence, with stress on the fractal dimension of the iso-surfaces of scalars. Journal of Fluid Mechanics, 72(03), 401–416.

    Article  MathSciNet  MATH  Google Scholar 

  • Mastorakos, E., Taylor, A. M. K. P., & Whitelaw, J. H. (1995). Extinction of turbulent counterflow flames with reactants diluted by hot products. Combustion and Flame, 102(1–2), 101–114.

    Article  Google Scholar 

  • Meneveau, C., & Sreenivasan, K. R. (1991). The multifractal nature of turbulent energy dissipation. Journal of Fluid Mechanics, 224(1), 429–484.

    Article  MATH  Google Scholar 

  • Parente, A., Sutherland, J. C., Dally, B. B., Tognotti, L., & Smith, P. J. (2011). Investigation of the mild combustion regime via principal component analysis. Proceedings of the Combustion Institute, 33, 3333–3341.

    Article  Google Scholar 

  • Seoud, R. E., & Vassilicos, J. C. (2007). Dissipation and decay of fractal-generated turbulence. Physics of Fluids, 19(10), 105108–105108.

    Article  MATH  Google Scholar 

  • Silvestrini, M., Genova, B., Parisi, G., & Trujillo, F. J. L. (2008). Flame acceleration and ddt run-up distance for smooth and obstacles filled tubes. Journal of Loss Prevention in the Process Industries, 21(5), 555–562.

    Article  Google Scholar 

  • Soulopoulos, N., Kerl, J., Spoonfeldner, T., Beyrau, F., Hardalupas, Y., Taylor, A. M. K. P., et al. (2013). Turbulent premixed flames on fractal-grid-generated turbulence. Fluid Dynamics Research, 45, 061404.

    Article  MATH  Google Scholar 

  • Spalding, D. B. (1996). Multi-fluid models of turbulent combustion. Computational Technology and Applications, CTAC95, 59–81.

    Google Scholar 

  • Stresing, R., Peinke, J., Seoud, R. E., & Vassilicos, J. C. (2010). Defining a new class of turbulent flows. Physical Review Letters, 104(19), 194501.

    Article  Google Scholar 

  • Swaminathan, N. & Bray, K. N. C. (2011). Turbulent Premixed Flames. Cambridge: Cambridge University Press.

    Google Scholar 

  • Vassilicos, J. C., & Hunt, J. C. R. (1991). Fractal dimensions and spectra of interfaces with application to turbulence. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 435(1895), 505–534.

    Article  MathSciNet  MATH  Google Scholar 

  • Verbeek, A. A., Bought, T. W. F. M., Stifles, G. G. M., Geurts, B. J., & van der Meer, T. H. (2015). Fractal turbulence enhancing low swirl combustion. Combustion and Flame, 162(1), 129–143.

    Article  Google Scholar 

  • Weinberg, F. J. (1956). The shadowgraph of a flat flame. Proceedings of the Royal Society of London. Series A, 235, 510–517.

    Article  Google Scholar 

  • Williams, T. C., Shaddix, C. R., & Schefer, R. W. (2007). Effect of syngas composition and CO\(_2\)-diluted oxygen on performance of a premixed swirl-stabilized combustor. Combustion Science and Technology, 180(1), 64–88.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support of the ONR under Grant N62909-12-1-7127 and AFOSR and EOARD under Grant FA8655-13-1-3024. The authors wish to thank Dr Gabriel Roy, Dr Chiping Li, Dr Gregg Abate and Dr Russell Cummings for encouraging the work. The contributions by Dr Philip Geipel, Dr Henry Goh and Mr Tao Li are also gratefully recognised.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. P. Lindstedt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 CISM International Centre for Mechanical Sciences

About this chapter

Cite this chapter

Hampp, F., Lindstedt, R.P. (2016). Fractal Grid Generated Turbulence—A Bridge to Practical Combustion Applications. In: Sakai, Y., Vassilicos, C. (eds) Fractal Flow Design: How to Design Bespoke Turbulence and Why. CISM International Centre for Mechanical Sciences, vol 568. Springer, Cham. https://doi.org/10.1007/978-3-319-33310-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33310-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33309-0

  • Online ISBN: 978-3-319-33310-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics