Skip to main content

Dental Stem Cells and Growth Factors

  • Chapter
  • First Online:
Book cover Dental Stem Cells: Regenerative Potential

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

The aim of the regenerative medicine and tissue engineering is to regenerate and repair the damaged cells and tissues in order to establish the normal functions [1]. The regenerative medicine involves the use of scaffolds, growth factors and stem cells [2]. Regeneration of the tissues exists naturally due to the presence of stem cells with the potential to self-regenerate and differentiate into one of more specialized cell types [3]. Fundamental to our understanding of regenerative medicine is the knowledge of growth factors that effect on a broad range of cellular activities including migration, proliferation, differentiation and apoptosis of cells, including stem/progenitor cells. Growth factors and cytokines may act as signaling molecules that modulate cell behavior by mediating intracellular communication. The effects of various growth factors on dental stem cells and how they may participate in dental pulp-dentin regeneration will be explained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mason C, Dunnill P (2008) A brief definition of regenerative medicine. Regen Med 3:1–5

    Article  PubMed  Google Scholar 

  2. Sundelacruz S, Kaplan DL (2009) Stem cell- and scaffold-based tissue engineering approaches to osteochondral regenerative medicine. Semin Cell Dev Biol 20:646–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tatullo M, Marrelli M, Paduano F (2015) The regenerative medicine in oral and maxillofacial surgery: the most important innovations in the clinical application of mesenchymal stem cells. Int J Med Sci 12(1):72–77

    Article  PubMed  PubMed Central  Google Scholar 

  4. Weissman IL (2000) Stem cells: units of development, units of regeneration, and units in evolution. Cell 100:157–168

    Article  CAS  PubMed  Google Scholar 

  5. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    Article  CAS  PubMed  Google Scholar 

  6. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78:7634–7638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Korbling M, Estrov Z (2003) Adult stem cells for tissue repair – a new therapeutic concept? N Engl J Med 349:570–582

    Article  PubMed  Google Scholar 

  8. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  CAS  PubMed  Google Scholar 

  9. Keating A (2012) Mesenchymal stromal cells: new directions. Cell Stem Cell 10:709–716

    Article  CAS  PubMed  Google Scholar 

  10. Zhang Y, Huang B (2012) Peripheral blood stem cells: phenotypic diversity and potential clinical applications. Stem Cell Rev 8:917–925

    Article  PubMed  Google Scholar 

  11. Zarrabi M, Mousavi SH, Abroun S, Sadeghi B (2014) Potential uses for cord blood mesenchymal stem cells. Cell 15:274–281

    CAS  Google Scholar 

  12. Bongso A, Fong CY (2013) The therapeutic potential, challenges and future clinical directions of stem cells from the Wharton’s jelly of the human umbilical cord. Stem Cell Rev 9:226–240

    Article  CAS  PubMed  Google Scholar 

  13. Romagnoli C, Brandi ML (2014) Adipose mesenchymal stem cells in the field of bone tissue engineering. World J Stem Cells 6:144–152

    Article  PubMed  PubMed Central  Google Scholar 

  14. Egusa H, Sonoyama W, Nishimura M, Atsuta I, Akiyama K (2012) Stem cells in dentistry—part I: Stem cell sources. J Prosthodont Res 56:151–165

    Article  PubMed  Google Scholar 

  15. Wu XB, Tao R (2012) Hepatocyte differentiation of mesenchymal stem cells. Hepatobiliary Pancreat Dis Int: HBPD INT 11:360–371

    Article  CAS  PubMed  Google Scholar 

  16. Ferroni L, Gardin C, Tocco I, Epis R, Casadei A, Vindigni V, Mucci G, Zavan B (2013) Potential for neural differentiation of mesenchymal stem cells. Adv Biochem Eng Biotechnol 129:89–115

    CAS  PubMed  Google Scholar 

  17. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 97:13625–13630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mao JJ, Prockop DJ (2012) Stem cells in the face: tooth regeneration and beyond. Cell Stem Cell 11:291–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tatullo M, Marrelli M, Shakesheff KM, White LJ (2015) Dental pulp stem cells: function, isolation and applications in regenerative medicine. J Tissue Eng Regen Med 9(11):1205–1216

    Article  PubMed  Google Scholar 

  20. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S (2003) Shed: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A 100:5807–5812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364:149–155

    Article  CAS  PubMed  Google Scholar 

  22. Morsczeck C, Gotz W, Schierholz J, Zeilhofer F, Kuhn U, Mohl C, Sippel C, Hoffmann KH (2005) Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol 24:155–165

    Article  CAS  PubMed  Google Scholar 

  23. Sonoyama W, Liu Y, Yamaza T, Tuan RS, Wang S, Shi S, Huang GT (2008) Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod 34:166–171

    Article  PubMed  PubMed Central  Google Scholar 

  24. Huang GT, Gronthos S, Shi S (2009) Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 88:792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Feng R, Lengner C (2013) Application of stem cell technology in dental regenerative medicine. Adv Wound Care (New Rochelle) 2(6):296–305

    Article  Google Scholar 

  26. Mooney DJ, Vandenburgh H (2008) Cell delivery mechanisms for tissue repair. Cell Stem Cell 2:205

    Article  CAS  PubMed  Google Scholar 

  27. Capone C, Frigerio S, Fumagalli S, Gelati M, Principato MC, Storini C, Montinaro M, Kraftsik R, De Curtis M, Parati E, De Simoni MG (2007) Neurosphere-derived cells exert a neuroprotective action by changing the ischemic microenvironment. PloS One 2, e373

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Kim SG, Zhou J, Solomon C, Zheng Y, Suzuki T, Chen M, Song S, Jiang N, Cho S, Mao JJ (2012) Effects of growth factors on dental stem/progenitor cells. Dent Clin North Am 56(3):563–575

    Article  PubMed  PubMed Central  Google Scholar 

  29. Aubin JE, Liu F, Malaval L, Gupta AK (1995) Osteoblast and chondroblast differentiation. Bone 17:77S

    Article  CAS  PubMed  Google Scholar 

  30. Rizk A, Rabie AB (2013) Human dental pulp stem cells expressing transforming growth factor beta3 transgene for cartilage-like tissue engineering. Cytotherapy 15:712

    Article  CAS  PubMed  Google Scholar 

  31. Schliephake H (2002) Bone growth factors in maxillofacial skeletal reconstruction. Int J Oral Maxillofac Surg 31(5):469–484, Review

    Article  Google Scholar 

  32. Gibble JW, Ness PM (1990) Fibrin glue: the perfect operative sealant? Transfusion 30:741–747

    Article  CAS  PubMed  Google Scholar 

  33. Saltz R, Sierra D, Feldman D, Saltz MB, Dimick A, Vasconez LO (1991) Experimental and clinical applications of fibrin glue. Plast Reconstr Surg 88:1005–1015, Discussion 1016–7

    Article  CAS  PubMed  Google Scholar 

  34. Hotz G (1991) Alveolar ridge augmentation with hydroxylapatite using fibrin sealant for fixation. Part I: An experimental study. Int J Oral Maxillofac Surg 20:204–207

    Article  CAS  PubMed  Google Scholar 

  35. Hotz G (1991) Alveolar ridge augmentation with hydroxylapatite using fibrin sealant for fixation. Part II: Clinical application. Int J Oral Maxillofac Surg 20:208–213

    Article  CAS  PubMed  Google Scholar 

  36. Schliephake H (2015) Clinical efficacy of growth factors to enhance tissue repair in oral and maxillofacial reconstruction: a systematic review. Clin Implant Dent Relat Res 17(2):247–273

    Article  PubMed  Google Scholar 

  37. Boyne PJ (2001) Application of bone morphogenetic proteins in the treatment of clinical oral and maxillofacial osseous defects. J Bone Joint Surg Am 83A(Suppl 1):S146–S150

    Google Scholar 

  38. Dohan Ehrenfest DM, Rasmusson L, Albrektsson T (2009) Classification of platelet concentrates: from pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF). Trends Biotechnol 27:158–167

    Article  CAS  PubMed  Google Scholar 

  39. Mazzucco L, Balbo V, Cattana E, Guaschino R, Borzini P (2009) Not every PRP-gel is born equal. Evaluation of growth factor availability for tissues through four PRP-gel preparations: Fibrinet, RegenPRP-Kit, Plateltex and one manual procedure. Vox Sang 97:110–118

    Article  CAS  PubMed  Google Scholar 

  40. Fréchette JP, Martineau I, Gagnon G (2005) Platelet-rich plasmas: growth factor content and roles in wound healing. J Dent Res 84:434–439

    Article  PubMed  Google Scholar 

  41. Weibrich G, Kleis WK, Hafner G, Hitzler WE, Wagner W (2003) Comparison of platelet, leukocyte, and growth factor levels in point-of-care platelet-enriched plasma, prepared using a modified Curasan kit, with preparations received from a local blood bank. Clin Oral Implants Res 14:357–362

    Article  PubMed  Google Scholar 

  42. Kumar RV, Shubhashini N (2013) Platelet rich fibrin: a new paradigm in periodontal regeneration. Cell Tissue Bank 14:453–463

    Google Scholar 

  43. Gulliksson H (2012) Platelets from platelet-rich-plasma versus buffy-coat-derived platelets: what is the difference? Rev Bras Hematol Hemoter 34:76–77

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mazzocca AD, McCarthy MB, Chowaniec DM et al (2012) Platelet-rich plasma differs according to preparation method and human variability. J Bone Joint Surg Am 94:308–316

    Article  PubMed  Google Scholar 

  45. Dohan Ehrenfest DM et al (2012) Do the fibrin architecture and eukocyte content influence the growth factor release of platelet concentrates? An evidence-based answer comparing a pure platelet-rich plasma (P-PRP) gel and a leukocyte and platelet-rich fibrin (L-PRF). Curr Pharm Biotechnol 13:1145–1152

    Article  PubMed  Google Scholar 

  46. Castillo TN, Pouliot MA, Kim HJ, Dragoo JL (2011) Comparison of growth factor and platelet concentration from commercial platelet-rich plasma separation systems. Am J Sports Med 39:266–271

    Article  PubMed  Google Scholar 

  47. Whitman DH, Berry R, Green D (1997) Platelet gel: an autologous alternative to fibrin glue with applications in oral and maxillofacial surgery. J Oral Maxillofac Surg 55:1294–1299

    Article  CAS  PubMed  Google Scholar 

  48. Marx RE, Carlson ER, Eichstaedt RM et al (1998) Platelet-rich plasma: growth factor enhancement for bone grafts. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 85:638–646

    Article  CAS  PubMed  Google Scholar 

  49. Weibrich G, Kleis WKG, Hitzler WE, Hafner G (2005) Comparison of the platelet concentrate collection system with the plasma-rich-in-growth-factors kit to produce platelet-rich plasma: a technical report. Int J Oral Maxillofac Implants 20:118–123

    PubMed  Google Scholar 

  50. Del Fabbro M, Bortolin M, Taschieri S, Weinstein R (2011) Is platelet concentrate advantageous for the surgical treatment of periodontal diseases? A systematic review and meta-analysis. J Periodontol 82:1100–1111

    Article  PubMed  Google Scholar 

  51. Plachokova AS, Nikolidakis D, Mulder J, Jansen JA, Creugers NH (2008) Effect of platelet-rich plasma on bone regeneration in dentistry: a systematic review. Clin Oral Implants Res 19:539–545

    Article  PubMed  Google Scholar 

  52. Mao JJ, Kim SG, Zhou J, Ye L, Cho S, Suzuki T, Fu SY, Yang R, Zhou X (2012) Regenerative endodontics: barriers and strategies for clinical translation. Dent Clin North Am 56(3):639–649

    Article  PubMed  PubMed Central  Google Scholar 

  53. Lind M (1996) Growth factors: possible new clinical tools. A review. Acta Orthop Scand 67(4):407–417

    Article  CAS  PubMed  Google Scholar 

  54. Lázár-Molnár E, Hegyesi H, Tóth S et al (2000) Autocrine and paracrine regulation by cytokines and growth factors in melanoma. Cytokine 12(6):547–554

    Article  PubMed  CAS  Google Scholar 

  55. Nicholas C, Lesinski GB (2011) Immunomodulatory cytokines as therapeutic agents for melanoma. Immunotherapy 3(5):673–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Seppä H, Grotendorst G, Seppä S et al (1982) Platelet-derived growth factor in chemotactic for fibroblasts. J Cell Biol 92(2):584–588

    Article  PubMed  Google Scholar 

  57. Deuel TF, Senior RM, Huang JS et al (1982) Chemotaxis of monocytes and neutrophils to platelet-derived growth factor. J Clin Invest 69(4):1046–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hellberg C, Ostman A, Heldin CH (2010) PDGF and vessel maturation. Recent Results Cancer Res 180:103–114

    Article  CAS  PubMed  Google Scholar 

  59. Bouletreau PJ, Warren SM, Spector JA et al (2002) Factors in the fracture microenvironment induce primary osteoblast angiogenic cytokine production. Plast Reconstr Surg 110(1):139–148

    Article  PubMed  Google Scholar 

  60. Hock JM, Canalis E (1994) Platelet-derived growth factor enhances bone cell replication but not differentiated function of osteoblasts. Endocrinology 134:1423–1428

    CAS  PubMed  Google Scholar 

  61. Rydziel S, Shaikh S, Canalis E (1994) Platelet-derived growth factor-AA and -BB (PDGF-AA and -BB) enhance the synthesis of PDGF-AA in bone cell cultures. Endocrinology 134:2441–2546

    Google Scholar 

  62. Canalis E, Varghese S, McCarthy TL, Centrella M (1992) Role of platelet derived growth factor in bone cell function. Growth Regul 2:151–155

    CAS  PubMed  Google Scholar 

  63. Shinbrot E, Peters KG, Williams LT (1994) Expression of the platelet-derived growth factor beta receptor during organogenesis and tissue differentiation in the mouse embryo. Dev Dyn 199:169–175

    Article  CAS  PubMed  Google Scholar 

  64. Soriano P (1997) The PDGF alpha receptor is required for neural crest cell development and for normal patterning of the somites. Development 124:2691–2700

    CAS  PubMed  Google Scholar 

  65. Yokose S, Kadokura H, Tajima N et al (2004) Platelet-derived growth factor exerts disparate effects on odontoblast differentiation depending on the dimers in rat dental pulp cells. Cell Tissue Res 315(3):375–384

    Article  CAS  PubMed  Google Scholar 

  66. Rutherford RB, Trailsmith MD, Ryan ME et al (1992) Synergistic effects of dexamethasone on platelet-derived growth factor mitogenesis in vitro. Arch Oral Biol 37(2):139–145

    Article  CAS  PubMed  Google Scholar 

  67. Denholm IA, Moule AJ, Bartold PM (1998) The behaviour and proliferation of human dental pulp cell strains in vitro, and their response to the application of platelet-derived growth factor-BB and insulin-like growth factor-1. Int Endod J 31(4):251–258

    Article  CAS  PubMed  Google Scholar 

  68. Nakashima M (1992) The effects of growth factors on DNA synthesis, proteoglycan synthesis and alkaline phosphatase activity in bovine dental pulp cells. Arch Oral Biol 37(3):231–236

    Article  CAS  PubMed  Google Scholar 

  69. Mullane EM, Dong Z, Sedgley CM et al (2008) Effects of VEGF and FGF2 on the revascularization of severed human dental pulps. J Dent Res 87(12):1144–1148

    Article  CAS  PubMed  Google Scholar 

  70. Kim JY, Xin X, Moioli EK et al (2010) Regeneration of dental-pulp-like tissue by chemotaxis-induced cell homing. Tissue Eng Part A 16(10):3023–3031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Watabe T, Miyazono K (2009) Roles of TGF-beta family signaling in stem cell renewal and differentiation. Cell Res 19(1):103–115

    Article  CAS  PubMed  Google Scholar 

  72. Burt DW, Law AS (1994) Evolution of the transforming growth factor-beta superfamily. Prog Growth Factor Res 5(1):99–118

    Article  CAS  PubMed  Google Scholar 

  73. Wahl SM (1992) Transforming growth factor beta (TGF-beta) in inflammation: a cause and a cure. J Clin Immunol 12(2):61–74

    Article  CAS  PubMed  Google Scholar 

  74. Derynck R, Jarrett JA, Chen EY et al (1985) Human transforming growth factor-beta complementary DNA sequence and expression in normal and transformed cells. Nature 316(6030):701–705

    Article  CAS  PubMed  Google Scholar 

  75. Centrella M, Canalis E (1985) Transforming and non transforming growth factors are present in medium conditioned by fetal rat calvariae. Proc Natl Acad Sci U S A 82:7335–7339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cassidy N, Fahey M, Prime SS et al (1997) Comparative analysis of transforming growth factor-beta isoforms 1–3 in human and rabbit dentine matrices. Arch Oral Biol 42(3):219–223

    Article  CAS  PubMed  Google Scholar 

  77. Lambert KE, Huang H, Mythreye K et al (2011) The type III transforming growth factor-β receptor inhibits proliferation, migration, and adhesion in human myeloma cells. Mol Biol Cell 22(9):1463–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Verrecchia F, Mauviel A (2002) Transforming growth factor-beta signaling through the Smad pathway: role in extracellular matrix gene expression and regulation. J Invest Dermatol 118(2):211–215

    Article  CAS  PubMed  Google Scholar 

  79. Massagué J, Blain SW, Lo RS (2000) TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 103(2):295–309

    Article  PubMed  Google Scholar 

  80. Moses HL, Serra R (1996) Regulation of differentiation by TGF-beta. Curr Opin Genet Dev 6(5):581–586

    Article  CAS  PubMed  Google Scholar 

  81. Melin M, Joffre-Romeas A, Farges JC et al (2000) Effects of TGFbeta1 on dental pulp cells in cultured human tooth slices. J Dent Res 79(9):1689–1696

    Article  CAS  PubMed  Google Scholar 

  82. He H, Yu J, Liu Y et al (2008) Effects of FGF2 and TGFbeta1 on the differentiation of human dental pulp stem cells in vitro. Cell Biol Int 32(7):827–834

    Article  CAS  PubMed  Google Scholar 

  83. Tziafas D, Papadimitriou S (1998) Role of exogenous TGF-beta in induction of reparative dentinogenesis in vivo. Eur J Oral Sci 106(Suppl 1):192–196

    Article  CAS  PubMed  Google Scholar 

  84. Howard C, Murray PE, Namerow KN (2010) Dental pulp stem cell migration. J Endod 36(12):1963–1966

    Article  PubMed  Google Scholar 

  85. Wahl SM (1999) TGF-beta in the evolution and resolution of inflammatory and immune processes. Introduction. Microbes Infect 1(15):1247–1249

    Article  CAS  PubMed  Google Scholar 

  86. Farges JC, Romeas A, Melin M et al (2003) TGF-beta1 induces accumulation of dendritic cells in the odontoblast layer. J Dent Res 82(8):652–656

    Article  CAS  PubMed  Google Scholar 

  87. Scheufler C, Sebald W, Hülsmeyer M (1999) Crystal structure of human bone morphogenetic protein-2 at 2.7 A resolution. J Mol Biol 287:103–105

    Article  CAS  PubMed  Google Scholar 

  88. Miyazono K (2000) Positive and negative regulation of TGF-β signalling. J Cell Sci 113:1101–1109

    CAS  PubMed  Google Scholar 

  89. McIntosh CJ, Lawrence S, Smith P, Juengel JL, McNatty KP (2012) Active immunization against the proregions of GDF9 or BMP15 alters ovulation rate and litter size in mice. Reproduction 143(2):195–201

    Article  CAS  PubMed  Google Scholar 

  90. Valentin-Opran A, Wozney J, Csimma C, Lilly L, Riedel GE (2002) Clinical evaluation of recombinant human bone morphogenetic protein-2. Clin Orthop Relat Res 395:110–120

    Article  PubMed  Google Scholar 

  91. Kaneda A, Fujita T, Anai M, Yamamoto S, Nagae G, Morikawa M, Tsuji S, Oshima M, Miyazono K, Aburatani H (2011) Activation of Bmp2-Smad1 signal and its regulation by coordinated alteration of H3K27 tri-methylation in Ras-induced senescence. PLoS Genet 7(11), e1002359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Açil Y, Springer IN, Broek V, Terheyden H, Jepsen S (2002) Effects of bone morphogenetic protein-7 stimulation on osteoblasts cultured on different biomaterials. J Cell Biochem 86(1):90–98

    Article  PubMed  CAS  Google Scholar 

  93. Kanayama M, Hashimoto T, Shigenobu K, Yamane S, Bauer TW, Togawa D (2006) A prospective randomized study of posterolateral lumbar fusion using osteogenic protein-1 (OP-1) versus local autograft with ceramic bone substitute: emphasis of surgical exploration and histologic assessment. Spine (Phila Pa 1976) 31(10):1067–1074

    Article  Google Scholar 

  94. Miller AF, Harvey SA, Thies RS, Olson MS (2000) Bone morphogenetic protein-9. An autocrine/paracrine cytokine in the liver. J Biol Chem 275(24):17937–17945

    Article  CAS  PubMed  Google Scholar 

  95. Chen C, Grzegorzewski KJ, Barash S, Zhao Q, Schneider H, Wang Q, Singh M, Pukac L, Bell AC, Duan R, Coleman T, Duttaroy A, Cheng S, Hirsch J, Zhang L, Lazard Y, Fischer C, Barber MC, Ma ZD, Zhang YQ, Reavey P, Zhong L, Teng B, Sanyal I, Ruben SM, Blondel O, Birse CE (2003) An integrated functional genomics screening program reveals a role for BMP-9 in glucose homeostasis. Nat Biotechnol 21(3):294–301

    Article  CAS  PubMed  Google Scholar 

  96. Truksa J, Peng H, Lee P, Beutler E (2006) Bone morphogenetic proteins 2, 4, and 9 stimulate murine hepcidin 1 expression independently of Hfe, transferrin receptor 2 (Tfr2), and IL-6. Proc Natl Acad Sci U S A 103(27):10289–10293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. López-Coviella I, Berse B, Krauss R, Thies RS, Blusztajn JK (2000) Induction and maintenance of the neuronal cholinergic phenotype in the central nervous system by BMP-9. Science 289(5477):313–316

    Article  PubMed  Google Scholar 

  98. Saito T, Ogawa M, Hata Y et al (2004) Acceleration effect of human recombinant bone morphogenetic protein-2 on differentiation of human pulp cells into odontoblasts. J Endod 30(4):205–208

    Article  PubMed  Google Scholar 

  99. Chen S, Gluhak-Heinrich J, Martinez M et al (2008) Bone morphogenetic protein 2 mediates dentin sialophosphoprotein expression and odontoblast differentiation via NF-Y signaling. J Biol Chem 283(28):19359–19370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Iohara K, Nakashima M, Ito M et al (2004) Dentin regeneration by dental pulp stem cell therapy with recombinant human bone morphogenetic protein 2. J Dent Res 83(8):590–595

    Article  CAS  PubMed  Google Scholar 

  101. Nakashima M, Nagasawa H, Yamada Y et al (1994) Regulatory role of transforming growth factor-beta, bone morphogenetic protein-2, and protein-4 on gene expression of extracellular matrix proteins and differentiation of dental pulp cells. Dev Biol 162(1):18–28

    Article  CAS  PubMed  Google Scholar 

  102. Rutherford RB, Spångberg L, Tucker M et al (1994) The time-course of the induction of reparative dentine formation in monkeys by recombinant human osteogenic protein-1. Arch Oral Biol 39(10):833–838

    Article  CAS  PubMed  Google Scholar 

  103. Rutherford RB, Wahle J, Tucker M et al (1993) Induction of reparative dentine formation in monkeys by recombinant human osteogenic protein-1. Arch Oral Biol 38(7):571–576

    Article  CAS  PubMed  Google Scholar 

  104. Six N, Lasfargues JJ, Goldberg M (2002) Differential repair responses in the coronal and radicular areas of the exposed rat molar pulp induced by recombinant human bone morphogenetic protein 7 (osteogenic protein 1). Arch Oral Biol 47(3):177–187

    Article  CAS  PubMed  Google Scholar 

  105. Rutherford RB, Gu K (2000) Treatment of inflamed ferret dental pulps with recombinant bone morphogenetic protein-7. Eur J Oral Sci 108(3):202–206

    Article  CAS  PubMed  Google Scholar 

  106. Jepsen S, Albers HK, Fleiner B et al (1997) Recombinant human osteogenic protein-1 induces dentin formation: an experimental study in miniature swine. J Endod 23(6):378–382

    Article  CAS  PubMed  Google Scholar 

  107. Nakashima M, Iohara K, Ishikawa M et al (2004) Stimulation of reparative dentin formation by ex vivo gene therapy using dental pulp stem cells electrotransfected with growth/differentiation factor 11 (Gdf11). Hum Gene Ther 15(11):1045–1053

    Article  CAS  PubMed  Google Scholar 

  108. Nakashima M, Tachibana K, Iohara K et al (2003) Induction of reparative dentin formation by ultrasound-mediated gene delivery of growth/differentiation factor 11. Hum Gene Ther 14(6):591–597

    Article  CAS  PubMed  Google Scholar 

  109. Li C, Yang X, He Y, Ye G, Li X, Zhang X, Zhou L, Deng F (2012) Bone morphogenetic protein-9 induces osteogenic differentiation of rat dental follicle stem cells in P38 and ERK1/2 MAPK dependent manner. Int J Med Sci 9(10):862–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhang H, Wang J, Deng F, Huang E, Yan Z, Wang Z, Deng Y, Zhang Q, Zhang Z, Ye J, Qiao M, Li R, Wang J, Wei Q, Zhou G, Luu HH, Haydon RC, He TC, Deng F (2015) Bone morphogenetic protein-9 effectively induces osteo/odontoblastic differentiation of the reversibly immortalized stem cells of dental apical papilla. Biomaterials 39:145–154

    Article  CAS  PubMed  Google Scholar 

  111. Metzger RJ, Krasnow MA (1999) Genetic control of branching morphogenesis. Science 284(5420):1635–1639

    Article  CAS  PubMed  Google Scholar 

  112. DiMario J, Buffinger N, Yamada S et al (1989) Fibroblast growth factor in the extracellular matrix of dystrophic (mdx) mouse muscle. Science 244(4905):688–690

    Article  CAS  PubMed  Google Scholar 

  113. Itoh N, Ornitz DM (2011) Fibroblast growth factors: from molecular evolution to roles in development, metabolism and disease. J Biochem 149(2):121–130

    Article  CAS  PubMed  Google Scholar 

  114. Kitchens DL, Snwyder EY, Gottlieb DI (1994) FGF and EGF are mitogens for immortalized neural progenitors. J Neurobiol 25:797–807

    Article  CAS  PubMed  Google Scholar 

  115. Amit M, Carpenter MK, Inokuma MS et al (2000) Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 227:271–278

    Article  CAS  PubMed  Google Scholar 

  116. Nakao K, Itoh M, Tomita Y, Tomooka Y, Tsuji T (2004) FGF-2 potently induces both proliferation and DSP expression in collagen type I gel cultures of adult incisor immature pulp cells. Biochem Biophys Res Commun 325:1052–1059

    Article  CAS  PubMed  Google Scholar 

  117. Solchaga LA, Penick K, Porter JD, Goldberg VM, Caplan AI, Welter JF (2005) FGF-2 enhances the mitotic and chondrogenic potentials human adult bone marrow-derived mesenchymal stem cells. J Cell Physiol 203:398–409

    Article  CAS  PubMed  Google Scholar 

  118. Shimabukuro Y, Ueda M, Ozasa M et al (2009) Fibroblast growth factor-2 regulates the cell function of human dental pulp cells. J Endod 35:1529–1535

    Article  PubMed  Google Scholar 

  119. Quarto N, Longaker MT (2006) FGF-2 inhibits osteogenesis in mouse adipose tissue-derived stromal cells and sustains their proliferative and osteogenic potential state. Tissue Eng 12:1405–1418

    Article  CAS  PubMed  Google Scholar 

  120. Suzuki T, Lee CH, Chen M et al (2011) Induced migration of dental pulp stem cells for in vivo pulp regeneration. J Dent Res 90(8):1013–1018

    Article  CAS  PubMed  Google Scholar 

  121. Qian J, Jiayuan W, Wenkai J, Peina W, Ansheng Z, Shukai S, Shafei Z, Jun L, Longxing N (2015) Basic fibroblastic growth factor affects the osteogenic differentiation of dental pulp stem cells in a treatment-dependent manner. Int Endod J 48(7):690–700

    Article  CAS  PubMed  Google Scholar 

  122. Wu J, Huang GT, He W, Wang P, Tong Z, Jia Q, Dong L, Niu Z, Ni L (2012) Basic fibroblast growth factor enhances stemness of human stem cells from the apical papilla. J Endod 38(5):614–622

    Article  PubMed  PubMed Central  Google Scholar 

  123. Debiais F, Hott M, Graulet AM, Marie PJ (1998) The effects of fibroblast growth factor-2 on human neonatal calvaria osteoblastic cells are differentiation stage specific. J Bone Miner Res 13:645–654

    Article  CAS  PubMed  Google Scholar 

  124. Sukarawan W, Nowwarote N, Kerdpon P, Pavasant P, Osathanon T (2014) Effect of basic fibroblast growth factor on pluripotent marker expression and colony forming unit capacity of stem cells isolated from human exfoliated deciduous teeth. Odontology 102(2):160–166

    Article  CAS  PubMed  Google Scholar 

  125. O’Connor R (1998) Survival factors and apoptosis. Adv Biochem Eng Biotechnol 62:137–166

    PubMed  Google Scholar 

  126. Joseph BK, Savage NW, Young WG et al (1993) Expression and regulation of insulin-like growth factor-I in the rat incisor. Growth Factors 8(4):267–275

    Article  CAS  PubMed  Google Scholar 

  127. Onishi T, Kinoshita S, Shintani S et al (1999) Stimulation of proliferation and differentiation of dog dental pulp cells in serum-free culture medium by insulin-like growth factor. Arch Oral Biol 44(4):361–371

    Article  CAS  PubMed  Google Scholar 

  128. Caviedes-Bucheli J, Canales-Sánchez P, Castrillón-Sarria N et al (2009) Expression of insulin-like growth factor-1 and proliferating cell nuclear antigen in human pulp cells of teeth with complete and incomplete root development. Int Endod J 42(8):686–693

    Article  CAS  PubMed  Google Scholar 

  129. Caviedes-Bucheli J, Angel-Londoño P, Díaz-Perez A et al (2007) Variation in the expression of insulinlike growth factor-1 in human pulp tissue according to the root-development stage. J Endod 33(11):1293–1295

    Article  PubMed  Google Scholar 

  130. Caviedes-Bucheli J, Muñoz HR, Rodríguez CE et al (2004) Expression of insulin-like growth factor-1 receptor in human pulp tissue. J Endod 30(11):767–769

    Article  PubMed  Google Scholar 

  131. Feng X, Huang D, Lu X, Feng G, Xing J, Lu J, Xu K, Xia W, Meng Y, Tao T, Li L, Gu Z (2014) Insulin-like growth factor 1 can promote proliferation and osteogenic differentiation of human dental pulp stem cells via mTOR pathway. Dev Growth Differ 56(9):615–624

    Article  CAS  PubMed  Google Scholar 

  132. Wang S, Mu J, Fan Z, Yu Y, Yan M, Lei G, Tang C, Wang Z, Zheng Y, Yu J, Zhang G (2012) Insulin-like growth factor 1 can promote the osteogenic differentiation and osteogenesis of stem cells from apical papilla. Stem Cell Res 8(3):346–356

    Article  CAS  PubMed  Google Scholar 

  133. Leung DW, Cachianes G, Kuang WJ et al (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246(4935):1306–1309

    Article  CAS  PubMed  Google Scholar 

  134. Nör JE, Christensen J, Mooney DJ et al (1999) Vascular endothelial growth factor (VEGF)-mediated angiogenesis is associated with enhanced endothelial cell survival and induction of Bcl-2 expression. Am J Pathol 154(2):375–384

    Article  PubMed  PubMed Central  Google Scholar 

  135. Ferrara N (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25(4):581–611

    Article  CAS  PubMed  Google Scholar 

  136. D’Alimonte I, Nargi E, Mastrangelo F et al (2011) Vascular endothelial growth factor enhances in vitro proliferation and osteogenic differentiation of human dental pulp stem cells. J Biol Regul Homeost Agents 25(1):57–69

    PubMed  Google Scholar 

  137. Matsushita K, Motani R, Sakuta T, Yamaguchi N, Koga T, Matsuo K, Nagaoka S, Abeyama K, Maruyama I, Torii M (2000) The role of vascular endothelial growth factor in human dental pulp cells: induction of chemotaxis, proliferation, and differentiation and activation of the AP-1-dependent signaling pathway. J Dent Res 79(8):1596–1603

    Article  CAS  PubMed  Google Scholar 

  138. Artese L, Rubini C, Ferrero G, Fioroni M, Santinelli A, Piattelli A (2002) Vascular endothelial growth factor (VEGF) expression in healthy and inflamed human dental pulps. J Endod 28(1):20–23

    Article  PubMed  Google Scholar 

  139. d’Aquino R, Graziano A, Sampaolesi M, Laino G, Pirozzi G, De Rosa A, Papaccio G (2007) Human postnatal dental pulp cells co-differentiate into osteoblasts and endotheliocytes: a pivotal synergy leading to adult bone tissue formation. Cell Death Differ 14(6):1162–1171

    Article  PubMed  CAS  Google Scholar 

  140. Marchionni C, Bonsi L, Alviano F et al (2009) Angiogenic potential of human dental pulp stromal (stem) cells. Int J Immunopathol Pharmacol 22(3):699–706

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Ghensi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ghensi, P. (2016). Dental Stem Cells and Growth Factors. In: Zavan, B., Bressan, E. (eds) Dental Stem Cells: Regenerative Potential. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-33299-4_5

Download citation

Publish with us

Policies and ethics